Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
DEPTH PREDICTION AT HOMOGENEOUS IMAGE STRUCTURES
Date
2008-01-22
Author
Kalkan, Sinan
Wörgötter, Florentin
Kruger, Norbert
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
104
views
0
downloads
Cite This
This paper proposes a voting-based model that predicts depth at weakly-structured image areas from the depth that is extracted using a feature-based stereo method. We provide results, on both real and artificial scenes, that show the accuracy and robustness of our approach. Moreover, we compare our method to different dense stereo algorithms to investigate the effect of texture on performance of the two different approaches. The results confirm the expectation that dense stereo methods are suited better for textured image areas and our method for weakly-textured image areas.
URI
https://www.scitepress.org/Link.aspx?doi=10.5220/0001079005200527
https://hdl.handle.net/11511/96537
DOI
https://doi.org/10.5220/0001079005200527
Conference Name
Proceedings of the Third International Conference on Computer Vision Theory and Applications
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Surface Reconstruction from Multiple Images Filtering Non Lambert Regions
BÜYÜATALAY, Soner; BİRGÜL, ÖZLEM; Halıcı, Uğur (2009-09-10)
In this study a new algorithm for 3D surface reconstruction from multiple images using a modified photometric stereo method is proposed and tested. The new algorithm, Filtered Lambert Photometric Stereo (FLPS), determines the non-Lambert pixels in the available images using a linearity test and constructs filtering masks for each image that corresponds to specular and self or cast shadow regions. Then, the photometric stereo is applied after eliminating the points in these masks. Tests carried out on synthe...
DeepDistance: A multi-task deep regression model for cell detection in inverted microscopy images
Koyuncu, Can Fahrettin; Gunesli, Gozde Nur; Atalay, Rengül; GÜNDÜZ DEMİR, Çiğdem (Elsevier BV, 2020-07-01)
This paper presents a new deep regression model, which we call DeepDistance, for cell detection in images acquired with inverted microscopy. This model considers cell detection as a task of finding most probable locations that suggest cell centers in an image. It represents this main task with a regression task of learning an inner distance metric. However, different than the previously reported regression based methods, the DeepDistance model proposes to approach its learning as a multi-task regression pro...
3d face representation and recognition using spherical harmonics
Tunçer, Fahri; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2008)
In this study, a 3D face representation and recognition method based on spherical harmonics expansion is proposed. The input data to the method is range image of the face. This data is called 2.5 dimensional. Input faces are manually marked on the two eyes, nose and chin points. In two dimensions, using the marker points, the human face is modeled as two concentric half ellipses for the selection of region of interest. These marker points are also used in three dimensions to register the faces so that the n...
Time-domain mapping of electromagnetic ray movement inside anisotropic spherical resonator
Biber, A; Golick, A; Tomak, Mehmet (2002-09-01)
This paper presents the analytical proof of "Time-Domain Mapping Method" for the spherical resonator made up of uniaxial crystal. In this way, the main types of caustics inside the spherical resonator made up of uniaxial crystal, which were investigated numerically before, are confirmed analytically. It is engraved that the problem of the ray flow inside the spherical resonator can be reduced to the problem of the ray flow inside metal cavity shaped as spheroid.
Low-Level Hierarchical Multiscale Segmentation Statistics of Natural Images
Akbaş, Emre (2014-09-01)
This paper is aimed at obtaining the statistics as a probabilistic model pertaining to the geometric, topological and photometric structure of natural images. The image structure is represented by its segmentation graph derived from the low-level hierarchical multiscale image segmentation. We first estimate the statistics of a number of segmentation graph properties from a large number of images. Our estimates confirm some findings reported in the past work, as well as provide some new ones. We then obtain ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Kalkan, F. Wörgötter, and N. Kruger, “DEPTH PREDICTION AT HOMOGENEOUS IMAGE STRUCTURES,” presented at the Proceedings of the Third International Conference on Computer Vision Theory and Applications, Funchal, Portekiz, 2008, Accessed: 00, 2022. [Online]. Available: https://www.scitepress.org/Link.aspx?doi=10.5220/0001079005200527.