Development of linearized euler solvers on frequency domain for oscillating airfoils

2021-09-08
Ankara International Aerospace Conference

Suggestions

Development of state dependent factorized optimal control methods with application to spacecraft coulomb formations
Gomroki, Mohammad Mehdi; Tekinalp, Ozan; Topputo, Francesco; Department of Aerospace Engineering (2017)
Among spacecraft formation control techniques, Coulomb tether to control the relative distance is proposed in the literature. A Coulomb tether is similar to physical tether that uses coulomb forces to keep spacecraft at close proximity. It is indicated that a coulomb tether provides an almost a propellantless formation control. The charges loaded to the bodies, can create attractive and repulsive forces between these bodies. Since the forces are relative, coulomb forces cannot change the total linear or ang...
Development of a Navier Stokes Solver for high fidelity simulatiom of wind turbine noise
Cengiz, Kenan; Özyörük, Yusuf (null; 2013-09-11)
In this report, the first stage of the development process of a flow solver is presented. The solver is intended for high-fidelity simulation of wind turbine aeroacoustics. At this stage of the code development, compressible Euler solver, which has several discretization enhancements for convection term, is tested, validated and discussed. The enhancements include symmetry preservation of the discretized forms, fourth order accuracy and optimization for low-dispersion (DRP), all of which would be quite bene...
Development of an equivalent model of aluminum honeycomb sandwich structures subjected to transverse loads
Yardımcı, Oza; Gürses, Ercan; Department of Aerospace Engineering (2019)
Sandwich structures are commonly employed in aviation because of the weight and strength advantages they provided. This common application has turned the accurate finite element analyses of them into a critical issue. In this thesis, a genetic algorithm-based optimization method is employed for creating accurate two-dimensional layered shell models of the sandwich panels with honeycomb cores. Firstly, the sandwich panels subjected to transverse loads with hexagonal honeycomb cores having different face shee...
Development of a pressure-based solver for both incompressible and compressible flows
Denk, Kerem; Sert, Cüneyt; Department of Mechanical Engineering (2007)
The aim of this study is to develop a two-dimensional pressure-based Navier-Stokes solver for incompressible/compressible flows. Main variables are Cartesian velocity components, pressure and temperature while density is linked to pressure via equation of state. Modified SIMPLE algorithm is used to achieve pressure-velocity coupling. Finite Volume discretisation is performed on non-orthogonal and boundary-fitted grids. Collocated variable arrangement is preferred because of its advantage on staggered arrang...
Development of a high-order navier-stokes solver for aeroacoustic predictions of wind turbine blade sections
Yalçın, Özgür; Özyörük, Yusuf; Department of Aerospace Engineering (2015)
Increased interest in renewable energy in the world has lead to research on wind turbines at a great pace. However, these turbines have come with a noise problem. The noise source of wind turbines is primarily aerodynamic noise highly related to complex, three dimensional, unsteady flow fields around them. Therefore, determination of these sources requires successful, accurate, turbulent flow solutions. In addition, because acoustic waves are non-dispersive and non-dissipative, such solutions must be carrie...
Citation Formats
A. T. Ardıç, A. Saygın, Ö. U. Baran, and E. Ciğeroğlu, “Development of linearized euler solvers on frequency domain for oscillating airfoils,” presented at the Ankara International Aerospace Conference, Ankara, Türkiye, 2021, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96552.