Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Extraction of 3D transform and scale invariant patches from range scans
Date
2007-06-22
Author
Akagunduz, Erdern
Ulusoy, İlkay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
221
views
0
downloads
Cite This
An algorithm is proposed to extract transformation and scale invariant 3D fundamental elements from the surface structure of 3D range scan data. The surface is described by mean and Gaussian curvature values at every data point at various scales and a scale-space search is performed in order to extract the fundamental structures and to estimate the location and the scale of each fundamental structure. The extracted fundamental structures can later be used as nodes in a topological graph where the links between the nodes can be defined as the spatial and geometric relations between the fundamental elements.
Subject Keywords
Surface fitting
,
Robots
,
Image analysis
,
Data engineering
,
Shape measurement
,
Biometrics
,
Surface structures
,
Data mining
URI
https://hdl.handle.net/11511/41377
DOI
https://doi.org/10.1109/cvpr.2007.383366
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
3D object representation using transform and scale invariant 3D features
AKAGÜNDÜZ, Erdem; Ulusoy, İlkay (2007-10-21)
An algorithm is proposed for 3D object representation using generic 3D features which are transformation and scale invariant. Descriptive 3D features and their relations are used to construct a graphical model for the object which is later trained and then used for detection purposes. Descriptive 3D features are the fundamental structures which are extracted from the surface of the 3D scanner output. This surface is described by mean and Gaussian curvature values at every data point at various scales and a ...
Coarse-to-fine surface reconstruction from silhouettes and range data using mesh deformation
Sahillioğlu, Yusuf; Yemez, Y. (2010-03-01)
We present a coarse-to-fine surface reconstruction method based on mesh deformation to build watertight surface models of complex objects from their silhouettes and range data. The deformable mesh, which initially represents the object visual hull, is iteratively displaced towards the triangulated range surface using the line-of-sight information. Each iteration of the deformation algorithm involves smoothing and restructuring operations to regularize the surface evolution process. We define a non-shrinking...
Multi-image region growing for integrating disparity maps
Leloglu, UĞUR MURAT; Halıcı, Uğur (1999-01-01)
In this paper, a multi-image region growing algorithm to obtain planar 3-D surfaces in the object space from multiple dense disparity maps, is presented. A surface patch is represented by a plane equation and a set of pixels in multiple images. The union of back projections of all pixels in the set onto the infinite plane, forms the surface patch. Thanks to that hybrid representation of planar surfaces, region growing (both region aggregation and region merging) is performed on all images simultaneously. Pl...
Image-based extraction of material reflectance properties of a 3D rigid object
Erdem, ME; Erdem, IA; Yilmaz, UG; Atalay, Mehmet Volkan (2004-01-01)
In this study, an appearance reconstruction method based on extraction of material reflectance properties of a three-dimensional (3D) object from its two-dimensional (2D) images is explained. One of the main advantages of this system is that the reconstructed object can be rendered in real-time with photorealistic quality in varying illumination conditions. The reflectance of the object is decomposed into diffuse and specular components. While the diffuse component is stored in a global texture, the specula...
3d geometric hashing using transform invariant features
Eskizara, Ömer; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2009)
3D object recognition is performed by using geometric hashing where transformation and scale invariant 3D surface features are utilized. 3D features are extracted from object surfaces after a scale space search where size of each feature is also estimated. Scale space is constructed based on orientation invariant surface curvature values which classify each surface point's shape. Extracted features are grouped into triplets and orientation invariant descriptors are defined for each triplet. Each pose of eac...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Akagunduz and İ. Ulusoy, “Extraction of 3D transform and scale invariant patches from range scans,” 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41377.