The relay channel with a wire-tapper

In this work a relay channel with a wire-tapper is studied for both discrete memoryless and Gaussian channels. The wire-tapper receives a physically degraded version of the destination's signal. We find inner and outer bounds for the capacity-equivocation rate region. We also argue that when the destination receives a physically degraded version of the relay's signal, inner and outer bounds meet for some special cases.
41st Annual Conference on Information Sciences and Systems (CISS 2007)


Triple stub circuit topology as simultaneous insertion phase, amplitude and impedance control circuit for phased array applications
Unlu, M.; Demir, Şimşek; Akın, Tayfun (Institution of Engineering and Technology (IET), 2012-10-23)
This study shows that the well-known triple stub circuit topology can also be used for controlling the insertion phase and amplitude of a given signal simultaneously, as well as preserving its impedance transformation ability. The triple stub circuit topology, which is nothing but an extension of the conventional double stub loaded-line phase shifter, results in one more degree of freedom to its solution when it is solved for its insertion phase. This additional degree of freedom not only brings the impedan...
Multiple Description Coding Based Compress-and-Forward for the Broadcast Relay Channel
Yildirim, Seckin Anil; Yüksel Turgut, Ayşe Melda (2012-01-01)
In this work, the broadcast relay channel (BRC) with one source, two destinations and a dedicated relay node is studied for both discrete memoryless and Gaussian channels. Unlike all the existing achievability schemes, which use decode-and-forward (DF) relaying for the BRC, the new achievability schemes are based on compress-and-forward (CF). Three different compression methods are proposed: naive, joint and multiple description coding based. In naive CF (nCF) and joint CF (jCF), the relay forms a single re...
The Effect of Antenna Correlation in Single-Carrier Massive MIMO Transmission
Beigiparast, Nader; Güvensen, Gökhan Muzaffer; Ayanoglu, Ender (2018-07-20)
This work presents a single-carrier massive MIMO transmission system for the frequency selective Gaussian multi-user channel. It considers both cases of spatially uncorrelated and correlated channel and compares them in terms of the user sum-rate as well as the general performance. We consider a channel with M antennas at the base station which provides services for K single-antenna users. We develop a general expression for the achievable rate among users in the channel with a correlation among antennas at...
The effect of periodicity distance in electric field direction on the resonance frequency by using equivalent circuit model and simulation
YAŞARÖRTEN, Pınar; Sayan, Gönül (2015-07-24)
In this study, the effect of the periodicity distance in electric field direction on the resonance frequency of a Split Ring Resonator (SRR) unit cell is examined using both HFSS and two-port equivalent circuit model. In HFSS simulations, perfect electric conductor (PEC) and perfect magnetic conductor (PMC) type boundary conditions are used at the surfaces perpendicular to electric and magnetic field, respectively. The resonance frequency for each periodicity distance in E-field direction is calculated usin...
The Sphere Packing Bound for DSPCs with Feedback à la Augustin
Nakiboğlu, Barış (Institute of Electrical and Electronics Engineers (IEEE), 2019-11-01)
Establishing the sphere packing bound for block codes on the discrete stationary product channels with feedback—which are commonly called the discrete memoryless channels with feedback—was considered to be an open problem until recently, notwithstanding the proof sketch provided by Augustin in 1978. A complete proof following Augustin’s proof sketch is presented to demonstrate its adequacy and to draw attention to two novel ideas that it employs. These novel ideas (i.e., the Augustin’s averaging and the use...
Citation Formats
A. M. Yüksel Turgut and E. Erkip, “The relay channel with a wire-tapper,” presented at the 41st Annual Conference on Information Sciences and Systems (CISS 2007), Maryland, Amerika Birleşik Devletleri, 2007, Accessed: 00, 2022. [Online]. Available: