Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Does depth estimation help object detection?
Date
2022-06-01
Author
Cetinkaya, Bedrettin
Kalkan, Sinan
Akbaş, Emre
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
173
views
0
downloads
Cite This
Ground-truth depth, when combined with color data, helps improve object detection accuracy over baseline models that only use color. However, estimated depth does not always yield improvements. Many factors affect the performance of object detection when estimated depth is used. In this paper, we comprehensively investigate these factors with detailed experiments, such as using ground-truth vs. estimated depth, effects of different state-of-the-art depth estimation networks, effects of using different indoor and outdoor RGB-D datasets as training data for depth estimation, and different architectural choices for integrating depth to the base object detector network. We propose an early concatenation strategy of depth, which yields higher mAP than previous works' while using significantly fewer parameters.
Subject Keywords
Depth estimation
,
Object detection
,
RGB-D
URI
https://hdl.handle.net/11511/97076
Journal
Image and Vision Computing
DOI
https://doi.org/10.1016/j.imavis.2022.104427
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
Does estimated depth help object detection?
Çetinkaya, Bedrettin; Akbaş, Emre; Department of Computer Engineering (2019)
With the widespread use of RGB-D cameras, depth information has improved solutions of many computer vision problems including object detection. Object detection can exploit depth information and different encodings obtained from the depth map. Although previous works proved that depth information can be used to improve object detection results, this thesis investigates the effects of depth map to object detection from different aspects in detailed experiments. To clarify these effects, we examine the follow...
Utilization of dense depth information for monoview object detection and instance segmentation
Çakırgöz, Çağlayan Can; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2022-5-10)
Object detection aims for detecting objects of certain classes in an image by bounding them in rectangular boxes whereas instance segmentation tries to detect objects in pixel level. Deep learning techniques, which have shown great improvements over the last decade, are utilized in these topics as well, and a significant success is achieved against the traditional methods. Similar improvements can be observed in dense depth estimation which deals with deducing dense information of a scene from a single imag...
Covariance Matrix Estimation of Texture Correlated Compound-Gaussian Vectors for Adaptive Radar Detection
Candan, Çağatay; Pascal, Frederic (2022-01-01)
Covariance matrix estimation of compound-Gaussian vectors with texture-correlation (spatial correlation for the adaptive radar detectors) is examined. The texture parameters are treated as hidden random parameters whose statistical description is given by a Markov chain. States of the chain represent the value of texture coefficient and the transition probabilities establish the correlation in the texture sequence. An Expectation-Maximization (EM) method based covariance matrix estimation solution is given ...
Representation Learning for Contextual Object and Region Detection in Remote Sensing
Firat, Orhan; Can, Gulcan; Yarman Vural, Fatoş Tunay (2014-08-28)
The performance of object recognition and classification on remote sensing imagery is highly dependent on the quality of extracted features, amount of labelled data and the priors defined for contextual models. In this study, we examine the representation learning opportunities for remote sensing. First we attacked localization of contextual cues for complex object detection using disentangling factors learnt from a small amount of labelled data. The complex object, which consists of several sub-parts is fu...
Fine-Grained Object Recognition and Zero-Shot Learning in Remote Sensing Imagery
Sumbul, Gencer; Cinbiş, Ramazan Gökberk; Aksoy, Selim (2018-02-01)
Fine-grained object recognition that aims to identify the type of an object among a large number of subcategories is an emerging application with the increasing resolution that exposes new details in image data. Traditional fully supervised algorithms fail to handle this problem where there is low betweenclass variance and high within-class variance for the classes of interest with small sample sizes. We study an even more extreme scenario named zero-shot learning (ZSL) in which no training example exists f...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Cetinkaya, S. Kalkan, and E. Akbaş, “Does depth estimation help object detection?,”
Image and Vision Computing
, vol. 122, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/97076.