Seismic performance evaluation of eccentrically braced frames with long links using FEMA P695 methodology

2022-05-01
Balıkçı, Elif Müge
Al-Janabi, Musab Aied Qissab
Topkaya, Cem
© 2022 Elsevier LtdShort links that primarily yield under shear are usually preferred in eccentrically braced frames (EBFs) due to their high rotation and energy dissipation capacities. Long links that yield under flexure can be used in cases where large openings are required for architectural reasons. Research conducted in the past showed that the seismic response factors recommended in ASCE7 result in designs with higher collapse probabilities than expected for EBFs with shear links. Long link behavior differs from the behavior of short links because the former is governed by flexure and subjected to significant amounts of strength and stiffness degradation. A numerical study was undertaken to evaluate the seismic response factors for EBFs with long links using FEMA P695 methodology. Twenty-four EBF archetypes were designed by considering the bay width, number of stories, the link length to bay width (e/L) ratio and column base condition as the variables. Performances of these archetypes were evaluated under maximum considered earthquake (MCE), and collapse level earthquake (CLE). The effects of degradation were studied by considering degrading and non-degrading responses separately. The results showed that strength and stiffness degradation increases the link rotation angle as much as 46 percent when compared with the non-degrading models. The recommended response factors were found to provide acceptable performance for e/L = 0.5, when 20% probability of collapse is considered under MCE level events. Remedial measures were investigated to achieve acceptable performance for collapse probability of 10% under MCE level events.
Engineering Structures

Suggestions

Seismic performance of chevron braced steel frames with and without viscous fluid dampers as a function of ground motion and damper characteristics
Dicleli, Murat (Elsevier BV, 2007-08-01)
This study is aimed at comparing the seismic performance of steel chevron braced frames (CBFs) with and without viscous fluid dampers (VFDs) as a function of the intensity and frequency characteristics of the ground motion and VFD parameters. For this purpose, comparative nonlinear time history (NLTH) analyses of single and multiple story CBFs with and without VFDs are conducted using ground motions with various frequency characteristics scaled to represent small, moderate and large intensity earthquakes. A...
Stability of laterally unsupported shear links in eccentrically braced frames
Özkılıç, Yasin Onuralp ; Zeybek, Ozer; Topkaya, Cem (2021-12-01)
I-shaped links in eccentrically braced frames (EBFs) are susceptible to lateral or lateral torsional buckling when subjected to cyclic link rotations. Lateral bracing should be provided at the ends of the I-shaped links in order to prevent these failures. Requirements for such braces are available in widely used design specifications such as the AISC Seismic Provisions for Structural Steel Buildings (AISC341-16) and EC8. These requirements limit the use of I-shaped links in bridge piers and elevator shafts....
Experimental and numerical studies on replaceable links for eccentrically braced frames
Özkılıç, Yasin Onuralp; Topkaya, Cem; Department of Civil Engineering (2020)
Eccentrically braced frames (EBFs) are extensively used as a steel lateral load resisting systems in high seismic regions since EBFs simulate ductility and high energy absorption capacity of moment resisting frames (MRFs) and high stiffness of concentrically braced frames (CBFs). High stiffness and high ductility of EBFs are obtained from diagonal braces and yielding of link element, respectively. This thesis reports findings of a three phase experimental and numerical research program on replaceable links ...
Seismic Retrofit of Deficient RC Structures with Internal Steel Frames
ÖZÇELİK, RAMAZAN; Akpinar, Ugur; Binici, Barış (2011-12-01)
This paper describes an experimental study on internal steel frames (ISFs) to retrofit seismically deficient reinforced concrete (RC) frames. One reference and six strengthened frame specimens were tested under constant gravity load and cyclic lateral displacement excursions. Installation of the ISF with and without anchors to the RC frame was examined. Test results showed that the snug tight ISF installed inside an RC frame may suffice to realize the benefit of implementing ISFs. If the horizontal shear st...
Seismic energy dissipation in deteriorating systems through low-cycle fatigue
Erberik, Murat Altuğ; Sucuoğlu, Haluk (Wiley, 2004-01-01)
Energy dissipation characteristics of structural members which exhibit both strength and stiffness deterioration under imposed displacement reversals are investigated. In the experimental part, 17 reinforced concrete beam specimens were tested under constant and variable amplitude inelastic displacement cycles. The constant-amplitude tests were employed to determine the low-cycle fatigue behaviour of specimens where the imposed displacement amplitude was the major variable. A two-parameter fatigue model was...
Citation Formats
E. M. Balıkçı, M. A. Q. Al-Janabi, and C. Topkaya, “Seismic performance evaluation of eccentrically braced frames with long links using FEMA P695 methodology,” Engineering Structures, vol. 258, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85126529411&origin=inward.