Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nano-tailored high-performance fiber-reinforced cementitious composites
Date
2022-03-01
Author
Yaman, İsmail Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
181
views
0
downloads
Cite This
URI
https://www.elsevier.com/books/recent-advances-in-nano-tailored-multi-functional-cementitious-composites/sahmaran/978-0-323-85229-6
https://hdl.handle.net/11511/97206
Relation
Recent Advances in Nano-Tailored Multi-Functional Cementitious Composites
Collections
Department of Civil Engineering, Book / Book chapter
Suggestions
OpenMETU
Core
Nano structural metal composites : synthesis, structural and thermal characterization
Kaleli, Kadir; Kayran İşçi, Ceyhan; Department of Chemistry (2008)
In this work , metal functional polymers, namely Cr-PS-b-P2VP, Co-PS-b-P2VP, Au-PS-b-P2VP, Fe-PS-b-P2VP and Mo-PS-b-P2VP were prepared by thermal reaction of hexacarbonylchromium, Cr(CO)6, octacarbonyldicobalt,Co2(CO)8, hydrogentetrachloroaurate(III), H(AuCl4).4H2O, trichloroiron(III), FeCl3.6H2O, molybdenum(VI)oxide, MoO3 and PS-b-P2VP. TEM images indicated formation of AuIII, Cr and Co nanoparticles. On the other hand, crystalline structures were detected for Fe-PS-b-P2VP and Mo-PS-b-P2VP. Samples involvi...
Nano-scale phase separation and glass forming ability of iron-boron based metallic glasses
Aykol, Muratahan; Akdeniz, Mahmut Vedat; Department of Metallurgical and Materials Engineering (2008)
This study is pertinent to setting a connection between glass forming ability (GFA) and topology of Fe-B based metallic glasses by combining intimate investigations on spatial atomic arrangements conducted via solid computer simulations with experimentations on high GFA bulk metallic glasses. In order to construct a theoretical framework, the nano-scale phase separation encountered in metallic glasses is investigated for amorphous Fe80B20 and Fe83B17 alloys via Monte Carlo equilibration and reverse Monte Ca...
Nano structural metal nano composites: synthesis, structural and thermal characterization
Orhan, Tuğba; Kayran, H. Ceyhan; Department of Chemistry (2009)
Recently, the use of block copolymers in preparation of nanocomposites has received great attention as they form well-defined micelles. In this work, the synthesis of different metal functional copolymers, nano structural metal composites and investigation of their reaction mechanism and thermal characteristics by pyrolysis mass spectroscopy have been aimed. Namely, polyisoprene-block-poly2vinylpyridine, (PI-b-P2VP) and poly2vinylpyridine-block-polymetylmethacrylate, (PMMA-b-P2VP) were used as block copolym...
Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices
AURANG, Pantea; Turan, Raşit; Ünalan, Hüsnü Emrah (IOP Publishing, 2017-10-06)
Reducing silicon ( Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to in...
Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices
Aurang, Pantea; Es, Fırat; Turan, Raşit; Ünalan, Hüsnü Emrah (null; 2015-11-29)
Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to inc...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Ö. Yaman,
Nano-tailored high-performance fiber-reinforced cementitious composites
. 2022.