Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Stiffness requirements for wind girders in open-top cylindrical steel tanks
Date
2022-07-01
Author
Zeybek, Özer
Topkaya, Cem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
257
views
0
downloads
Cite This
© 2022 Elsevier LtdAboveground cylindrical storage tanks are very thin shell structures which are prone to buckling when subjected to wind pressure. Both external and internal pressures are developed due to wind action, and the magnitudes of the pressures generally vary around the circumference. A wind girder is generally used in open-top cylindrical tanks to increase their resistance against buckling. The wind girder must have adequate strength and stiffness in order to fulfill its function properly. Widely used design specifications provide recommendations for the design of the wind girder. Strength requirements are given in terms of stress resultants, while a minimum second moment of area is provided as a stiffness requirement. The recommendations for the stiffness requirement were developed by conducting Linear Elastic Bifurcation Analysis (LBA) of cylindrical shells subjected to uniform external pressure. This paper explores stiffness requirements for the wind girder in open-top cylindrical steel tanks. The relationship between the buckling strength and the second moment of area of the wind girder was explored through a finite element parametric study. Tank shells with different radius-to-thickness and height-to-diameter ratios and having different wind girder sizes were investigated by means of LBA. A buckling strength curve was developed based on the LBA results where the strengths can be predicted with 90% accuracy. In addition, a new second moment of area requirement was proposed. The parametric study was extended to investigate the behavior using Geometrically Nonlinear Analysis including Imperfections (GNIA). The same tank geometries were studied using GNIA and considering different imperfection amplitudes. A buckling strength curve, which takes into account imperfection amplitudes, was developed to be used in design.
Subject Keywords
Buckling
,
Cylindrical shells
,
Imperfection
,
Wind girder
,
Wind loading
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85129728759&origin=inward
https://hdl.handle.net/11511/97689
Journal
Thin-Walled Structures
DOI
https://doi.org/10.1016/j.tws.2022.109353
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Stress resultants for wind girders in open-top cylindrical steel tanks
Zeybek, Ozer; Topkaya, Cem; Rotter, J. Michael (Elsevier BV, 2019-10-01)
Empty open-top cylindrical steel tanks are susceptible to buckling when subjected to external pressure due to wind or partial vacuum due to blocked vents. A "wind girder" is commonly used at the top of the tank wall to increase its strength against external pressure instability. The wind pressure varies around the circumference of the tank, but is relatively constant up its height. A series of cosine functions is typically used to describe the variation of wind pressure around the circumference. Expressions...
Buckling of cylindrical metal shells on discretely supported ring beams
Sonat, Cem; Topkaya, Cem; Rotter, J. Michael (2015-08-01)
Silos in the form of cylindrical metal shells are usually supported on evenly spaced columns in applications where an access space is needed for the discharge of contained solids. In large silos a ring beam is used to distribute the column forces into the shell. The presence of discrete supports results in a circumferential non-uniformity of axial stresses in the shell. This non-uniformity leads to high local stresses that must be considered in assessing the possibility of shell buckling. Design standards p...
Buckling of cylindrical metal shells resting on discretely supported ring beams
Sonat, Cem; Topkaya, Cem; Department of Civil Engineering (2013)
Silos in the form of cylindrical metal shells can be supported by evenly spaced columns in applications where an access space is needed for discharge of contained solids. In large silos a ring beam is utilized to more evenly distribute the column forces into the shell. The presence of discrete supports results in a non-uniformity of meridional stresses around the circumference. The stress non-uniformity must be taken into account in assessing the stability of the shell. Design standards provide recommendati...
Strength and stiffness requirements for intermediate ring stiffeners on discretely supported cylindrical shells
Zeybek, Ozer; Topkaya, Cem; Rotter, J. Michael (2015-11-01)
Silos in the form of a cylindrical metal shell are often supported on a ring beam which rests on discrete column supports. This support condition produces a circumferential non-uniformity in the axial membrane stresses in the silo shell. One way of reducing the non-uniformity of these stresses is to use a very stiff ring beam which partially or fully redistributes the stresses from the local support into uniform stresses in the shell. A better alternative is to use a combination of a flexible ring beam and ...
Symmetric and asymmetric vibrations of cylindrical shells
Akyüz, Uğurhan (2005-09-09)
The stability of cylindrical shells of arbitrary wall thickness subjected to uniform radial tensile or compressive dead-load traction is investigated. The material of the shell is assumed to be a polynomial compressible material which is homogeneous, isotropic, and hyperelastic. The governing equations are solved numerically using the multiple shooting method. The loss of stability occurs when the motions cease to be periodic. The effects of several geometric and material properties on the stress and the de...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Zeybek and C. Topkaya, “Stiffness requirements for wind girders in open-top cylindrical steel tanks,”
Thin-Walled Structures
, vol. 176, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85129728759&origin=inward.