Fibers of thermoplastic polymer blends activate multiple interlayer toughening mechanisms

2022-07-01
Kılıçoğlu, Melike
Bat, Erhan
Gündüz, Güngör
YILDIRIM, MUSTAFA UTKU
URGUN, KAMİL
MAVİŞ, BORA
© 2022 Elsevier LtdInterleaving fiber reinforced layered composites with thermoplastic veils is a strategy that has been examined by using electrospun fibers of homopolymers as well as their physical mixtures. Separate toughening mechanisms were activated by the individual presence of the physically mixed fibers in previous studies. Here, we show that it is possible to initiate a concerted action of these mechanisms by interleaving electrospun fiber veils based on blends of PCL and PA6 (80/20, 60/40 and 40/60). Blend composition was pivotal in activating different toughening mechanisms. Fiber debonding was unobstructed in PA6 interleaves in mode I; whereas PCL toughened the interfaces by plasticizing the epoxy. Debonding and effective bridging along the strong axes of fibers was only possible at a certain blend composition that permitted penetration of PCL into the epoxy matrix upon melting during curing and allowed these regions to retard debonding.
Composites Part A: Applied Science and Manufacturing

Suggestions

Fiber/matrix interface stress analysis of flax-fiber composites under transverse loading considering material nonlinearity
SABUNCUOĞLU, BARIŞ; Cakmakci, Onur; Kadıoğlu, Fevzi Suat (SAGE Publications, 2020-05-01)
Distribution of stresses in fiber/matrix interface in UD flax fiber reinforced composites is investigated under transverse loading and compared with conventional synthetic fibers. Micro-scale finite element models with representative volume elements are generated with various fiber packing types and fiber volume ratios. The study is performed for various strain values, which take into account the material nonlinearity of matrix. The results show that significantly lower stress concentrations exist in the ca...
Deformation compatibility of masonry and composite materials
Bespalov, V. V.; Ucer, D.; Salmanov, I. D.; Kurbanov, I. N.; Kupavykh, S. V. (2018-01-01)
Fiber Reinforced Polymers (FRP) are commonly used nowadays for strengthening deteriorated structures. The purpose of this research was to determine the combined behavior of masonry walls and reinforcing meshes together, according to their deformation characteristics. A sample wall with average masonry parameters and seven different common polymer nets on them were modeled in Abaqus Software. Moreover, a case study wall was also modeled according to the strength values obtained from direct testing of a demol...
Strength of carbon fiber reinforced polymers bonded to concrete and masonry
Serdar Camli, Umit; Binici, Barış (Elsevier BV, 2007-07-01)
Fiber reinforced polymers (FRPs) have gained popularity in upgrades of reinforced concrete structural elements within the last decade because of their ease of application and high strength-to-weight ratio. In the design of an effective retrofitting solution using FRP systems, the anchorage capacity has an important role. This study presents the results of 57 double shear push-out tests conducted to determine the strength of carbon fiber reinforced polymers (CFRPs) bonded to concrete prisms and hollow clay t...
Analysis of fiber-reinforced elastomeric isolators under pure "warping"
Pinarbasi, Seval; Mengi, Yalcin (2017-01-10)
As a relatively new type of multi-layered rubber-based seismic isolators, fiber-reinforced elastomeric isolators (FREIs) are composed of several thin rubber layers reinforced with flexible fiber sheets. Limited analytical studies in literature have pointed out that "warping" (distortion) of reinforcing sheets has significant influence on buckling behavior of FREIs. However, none of these studies, to the best knowledge of authors, has investigated their warping behavior, thoroughly. This study aims to invest...
Fiber loop ring down spectroscopy for trace chemical detection
Cengiz, Betül; Danışman, Mehmet Fatih; Esentürk, Okan; Department of Chemistry (2013)
Fiber loop ring down (FLRD) spectroscopy is a sensitive spectroscopic technique that is based on absorption and it is convenient for trace chemical detection. Different FLRD systems are being improved in order to increase their sensitivity. In FLRD spectroscopy, detection of a sample is done by measuring of a leaking light at each trip within an optical cavity. Intensity of leaking light has an exponential decay where it is reduced by absorption of sample and scattering of light. In this project, two FLRD s...
Citation Formats
M. Kılıçoğlu, E. Bat, G. Gündüz, M. U. YILDIRIM, K. URGUN, and B. MAVİŞ, “Fibers of thermoplastic polymer blends activate multiple interlayer toughening mechanisms,” Composites Part A: Applied Science and Manufacturing, vol. 158, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85130168430&origin=inward.