Deformation compatibility of masonry and composite materials

2018-01-01
Bespalov, V. V.
Ucer, D.
Salmanov, I. D.
Kurbanov, I. N.
Kupavykh, S. V.
Fiber Reinforced Polymers (FRP) are commonly used nowadays for strengthening deteriorated structures. The purpose of this research was to determine the combined behavior of masonry walls and reinforcing meshes together, according to their deformation characteristics. A sample wall with average masonry parameters and seven different common polymer nets on them were modeled in Abaqus Software. Moreover, a case study wall was also modeled according to the strength values obtained from direct testing of a demolished masonry wall that was shaped as secondary blocks for reusing purposes. In addition to the analysis of this plain recovered wall, the strengthened version of it with carbon fiber polymer mesh was also modeled. The results obtained from the theoretical sample wall and the case study wall with plain and reinforced alternatives stated that; the compatibility of deformation characteristics between the wall and the reinforcing mesh is the key for combined strength behavior of the wall. Lastly, besides illustrating and discussing all the stress-strain conditions for the analyzed cases, this study also offered a formula for the detection of combined behavior in question, according to the material properties of unreinforced wall and reinforcing mesh separately. This formula is quite useful in order to decide to the suitable mesh type prior to the application.
MAGAZINE OF CIVIL ENGINEERING

Suggestions

Seismic strengthening of a mid-rise reinforced concrete frame using CFRPs: an application from real life
Tan, Mustafa Tümer; Özcebe, Güney; Department of Civil Engineering (2009)
FRP retrofitting allows the utilization of brick infill walls as lateral load resisting elements. This practical retrofit scheme is a strong alternative to strengthen low to mid-rise deficient reinforced concrete (RC) structures in Turkey. The advantages of the FRP applications, to name a few, are the speed of construction and elimination of the need for building evacuation during construction. In this retrofit scheme, infill walls are adopted to the existing frame system by using FRP tension ties anchored ...
Mechanical properties of hybrid fiber reinforced concrete
Yurtseven, A. E.; Yaman, İsmail Özgür; Tokyay, Mustafa (2006-07-07)
Fiber reinforcement is commonly used to provide toughness and ductility to brittle cementitious matrices. Reinforcement of concrete with a single type of fiber may improve the desired properties to a limited level. A composite can be termed as hybrid, if two or more types of fibers are rationally combined to produce a composite that derives benefits from each of the individual fibers and exhibits a synergetic response. This study aims to characterize and quantify the mechanical properties of hybrid fiber re...
Fiber/matrix interface stress analysis of flax-fiber composites under transverse loading considering material nonlinearity
SABUNCUOĞLU, BARIŞ; Cakmakci, Onur; Kadıoğlu, Fevzi Suat (SAGE Publications, 2020-05-01)
Distribution of stresses in fiber/matrix interface in UD flax fiber reinforced composites is investigated under transverse loading and compared with conventional synthetic fibers. Micro-scale finite element models with representative volume elements are generated with various fiber packing types and fiber volume ratios. The study is performed for various strain values, which take into account the material nonlinearity of matrix. The results show that significantly lower stress concentrations exist in the ca...
Anchorage strength of fiber reinforced polymers
Çamlı, Ümit Serdar; Binici, Barış; Department of Civil Engineering (2005)
Fiber reinforced polymers (FRPs) have gained popularity in upgrade projects for reinforced concrete structural elements within the last decade because of its ease of application and high strength-to-weight ratio. In the design of an effective retrofitting solution by means of an FRP system, the anchorage capacity has an important role. This study presents the results of an experimental program conducted to determine the strength of carbon fiber reinforced polymers (CFRPs) bonded to concrete prisms or hollow...
Flexibility improvement of short glass fiber reinforced epoxy by using a liquid elastomer
Kaynak, Cevdet; Tincer, Teoman (Elsevier BV, 2003-03-17)
In certain applications of fiber reinforced polymer composites flexibility is required. The aim of this study was to improve flexibility of short glass fiber reinforced epoxy composites by using a liquid elastomer. For this purpose, diglycidyl ether of bisphenol-A (DGEBA) based epoxy matrix was modified with hydroxyl terminated polybutadiene (HTPB). A silane coupling agent (SCA) was also used to improve the interfacial adhesion between glass fibers and epoxy matrix. During specimen preparation, hardener and...
Citation Formats
V. V. Bespalov, D. Ucer, I. D. Salmanov, I. N. Kurbanov, and S. V. Kupavykh, “Deformation compatibility of masonry and composite materials,” MAGAZINE OF CIVIL ENGINEERING, pp. 136–150, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67928.