Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Abstract Hyperbolic Chaos
Download
index.pdf
Date
2022-01-01
Author
Akhmet, Marat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
146
views
47
downloads
Cite This
The abstract hyperbolic sets are introduced. Continuous and differentiable mappings as well as rate of convergence and transversal manifolds are not under discussion, and the symbolic dynamics paradigm is realized in a new way. Our suggestions are for more neat comprehension of chaos in the domain. The novelties can serve for revisited models as well as motivate new ones.
Subject Keywords
Abstract hyperbolic sets Poincare chaos Li-Yorke chaos Devaney chaos Abstract hyperbolic chaos Smale Horseshoe
URI
https://hdl.handle.net/11511/97714
Journal
Discontinuity, Nonlinearity, and Complexity
DOI
https://doi.org/10.5890/dnc.2022.03.011
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Chaos generation in hyperbolic systems
Akhmet, Marat; FEN, MEHMET ONUR (2012-01-01)
© 2012 L & H Scientific Publishing, LLC.In the present paper, we consider extension of chaos in hyperbolic systems with arbitrary large dimensions. Our investigations comprise chaos in the sense of both Devaney and Li-Yorke. We provide a mechanism for unidirectionally coupled systems through the insertion of chaos from one system to another, where the latter is initially nonchaotic. In our procedure for the chaos extension, we take advantage of chaotic sets of functions to provide mathematically approved re...
Multiple linear regression model with stochastic design variables
İslam, Muhammed Qamarul (Informa UK Limited, 2010-01-01)
In a simple multiple linear regression model, the design variables have traditionally been assumed to be non-stochastic. In numerous real-life situations, however, they are stochastic and non-normal. Estimators of parameters applicable to such situations are developed. It is shown that these estimators are efficient and robust. A real-life example is given.
Modular Chaos for Random Processes
Akhmet, Marat (2022-1-01)
In the present paper, an essential generalization of the symbolic dynamics is considered. We apply the notions of abstract self-similar sets and the similarity map for a chaos introduction, which orbits are expanded among infinitely many modules. The dynamics is free of dimensional, metrical and topological assumptions. It unites all the three types of Poincar´e, Li-Yorke and Devaney chaos in a single model, which can be unbounded. The research demonstrates that the dynamics of Poincar´e chaos is of excepti...
Nested local symmetry set
Tarı, Zehra Sibel (Elsevier BV, 2000-08-01)
A local-symmetry-based representation for shapes in arbitrary dimensions and a method for its computation are presented. The method depends on analyzing the Hessian of a specific boundaryness function, v, which is computed as the minimizer of an energy functional. The method is basically a generalized ridge finding scheme in which the ridges are defined in terms of the orbit of the gradient vector del v under the action of the Hessian of v. Once the ridges are determined, the local extrema of the magnitude ...
Abstract similarity, fractals and chaos
Akhmet, Marat (2021-05-01)
A new mathematical concept of abstract similarity is introduced and is illustrated in the space of infinite strings on a finite number of symbols. The problem of chaos presence for the Sierpinski fractals, Koch curve, as well as Cantor set is solved by considering a natural similarity map. This is accomplished for Poincare, Li-Yorke and Devaney chaos, including multi-dimensional cases. Original numerical simulations illustrating the results are presented.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Akhmet, “Abstract Hyperbolic Chaos,”
Discontinuity, Nonlinearity, and Complexity
, vol. 11, no. 1, pp. 133–138, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/97714.