Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Chaos generation in hyperbolic systems
Date
2012-01-01
Author
Akhmet, Marat
FEN, MEHMET ONUR
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
113
views
0
downloads
Cite This
© 2012 L & H Scientific Publishing, LLC.In the present paper, we consider extension of chaos in hyperbolic systems with arbitrary large dimensions. Our investigations comprise chaos in the sense of both Devaney and Li-Yorke. We provide a mechanism for unidirectionally coupled systems through the insertion of chaos from one system to another, where the latter is initially nonchaotic. In our procedure for the chaos extension, we take advantage of chaotic sets of functions to provide mathematically approved results. The theoretical results are supported through the simulations for the extension of chaos generated by a Duffing's oscillator. A control procedure for the extended chaos is demonstrated numerically in the paper.
Subject Keywords
Chaos control
,
Chaotic attractor
,
Devaney chaos
,
Li-Yorke chaos
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85015555931&origin=inward
https://hdl.handle.net/11511/99025
Journal
Discontinuity, Nonlinearity, and Complexity
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Abstract Hyperbolic Chaos
Akhmet, Marat (2022-01-01)
The abstract hyperbolic sets are introduced. Continuous and differentiable mappings as well as rate of convergence and transversal manifolds are not under discussion, and the symbolic dynamics paradigm is realized in a new way. Our suggestions are for more neat comprehension of chaos in the domain. The novelties can serve for revisited models as well as motivate new ones.
Ant Colony Optimization based clustering methodology
İNKAYA, TÜLİN; Kayaligil, Sinan; Özdemirel, Nur Evin (Elsevier BV, 2015-03-01)
In this work we consider spatial clustering problem with no a priori information. The number of clusters is unknown, and clusters may have arbitrary shapes and density differences. The proposed clustering methodology addresses several challenges of the clustering problem including solution evaluation, neighborhood construction, and data set reduction. In this context, we first introduce two objective functions, namely adjusted compactness and relative separation. Each objective function evaluates the cluste...
Chaotification of Impulsive Systems by Perturbations
Fen, Mehmet Onur; Akhmet, Marat (World Scientific Pub Co Pte Lt, 2014-06-01)
In this paper, we present a new method for chaos generation in nonautonomous impulsive systems. We prove the presence of chaos in the sense of Li-Yorke by implementing chaotic perturbations. An impulsive Duffing oscillator is used to show the effectiveness of our technique, and simulations that support the theoretical results are depicted. Moreover, a procedure to stabilize the unstable periodic solutions is proposed.
LOCAL OPERATOR ALGEBRAS FRACTIONAL POSITIVITY AND THE QUANTUM MOMENT PROBLEM
Dosi, Anar (American Mathematical Society (AMS), 2011-02-01)
In the present paper we introduce quantum measures as a concept of quantum functional analysis and develop the fractional space technique in the quantum (or local operator) space framework. We prove that each local operator algebra (or quantum *-algebra) has a fractional space realization. This approach allows us to formulate and prove a noncommutative Albrecht-Vasilescu extension theorem, which in turn solves the quantum moment problem.
Quantum system structures of quantum spaces and entanglement breaking maps
Dosi, A. A. (IOP Publishing, 2019-07-01)
This paper is devoted to the classification of quantum systems among the quantum spaces. In the normed case we obtain a complete solution to the problem when an operator space turns out to be an operator system. The min and max quantizations of a local order are described in terms of the min and max envelopes of the related state spaces. Finally, we characterize min-max-completely positive maps between Archimedean order unit spaces and investigate entanglement breaking maps in the general setting of quantum...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Akhmet and M. O. FEN, “Chaos generation in hyperbolic systems,”
Discontinuity, Nonlinearity, and Complexity
, vol. 1, no. 4, pp. 367–386, 2012, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85015555931&origin=inward.