All-SiC Traction Converter for Light Rail Transportation Systems: Design Methodology and Development of 165 kVA Prototype

Download
2022-5-01
Yıldırım, Doğan
Akşit, Mehmet Hakan
ÇADIRCI, IŞIK
Ermiş, Muammer
The design and development of a high-performance 165 kVA, 750 V DC all-silicon carbide (SiC) traction converter for new generation light rail transportation systems (LRTSs) are described. In the design of the traction motor drive, the efficiency of the overall system is maximized and the line current harmonic content of the traction motor is minimized. A complete mathematical model of the physical system is derived to carry out real-time simulations and proper control of the LRTS on a real rail track. The electrical and thermal performances of traction-type SiC power MOSFET modules are compared with those of alternative hybrid and Si-IGBT modules for various switching frequencies. The implementation of the developed system is also described. The performance of the resulting system is verified experimentally on a full-scale physical simulator as well as for various track conditions. Very promising results for the next generation railway traction motor drives have been obtained in terms of performance criteria, such as very high efficiency, low harmonic distortion of the motor line current, low cooling requirement, relatively high switching frequency, and hence, superior controller performance. The effects of the SiC power MOSFET operation on the insulation of the available traction motors are also examined experimentally. This paper is accompanied by a video demonstrating the experimental work.
Electronics (Switzerland)

Suggestions

ALL SIC TRACTION CONVERTER FOR LIGHT RAIL TRANSPORTATION SYSTEMS: DESIGN METHODOLOGY AND DEVELOPMENT OF A 500 - 900 VDC, 165 KVA PROTOTYPE
YILDIRIM, Doğan; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2021-9-24)
Design methodology and development of a 165 kVA, all-silicon carbide (SiC) traction converter for new generation light rail transportation systems (LRTS) have been carried out in this thesis. Electrical, mechanical, and thermal design principles of all-SiC power MOSFET-based traction converter have been described in detail. In order to verify the produced converter, design and implementation of a full-scale physical simulator of an all-SiC traction motor drive for LRTS have been performed. A complete mathem...
Full-Scale Physical Simulator of All SiC Traction Motor Drive With Onboard Supercapacitor ESS for Light-Rail Public Transportation
Yildirim, Dogan; Aksit, Mehmet Hakan; Yolacan, Cem; Pul, Tevfik; Ermis, Cezmi; Aghdam, Behrang H.; ÇADIRCI, IŞIK; Ermiş, Muammer (2020-08-01)
This article deals with the design and laboratory implementation of a full-scale physical simulator of an all-silicon carbide (SiC) traction motor drive for light-rail transit systems (LRTS) with onboard supercapacitor energy storage system (ESS). It consists of a pulsewidth modulation (PWM) rectifier representing the 750 V dc catenary line, a three-phase two-level PWM traction inverter to drive a three-phase squirrel-cage traction motor, a flywheel coupled to the motor shaft to represent the dynamic behavi...
Implementation of a vector controlled induction motor drive
Acar, Akın; Ertan, Hulusi Bülent; Department of Electrical and Electronics Engineering (2004)
High dynamic performance, which is obtained from dc motors, became achievable from induction motors with the recent advances in power semiconductors, digital signal processors and development in control techniques. By using field oriented control, torque and flux of the induction motors can be controlled independently as in dc motors. The control performance of field oriented induction motor drive greatly depends on the correct stator flux estimation. In this thesis voltage model is used for the flux estima...
Design optimization of variable frequency driven three-phase induction motors
Ertan, B; Leblebicioğlu, Mehmet Kemal; Simsir, B; Hamarat, S; Cekic, A; Pirgaip, M (1998-01-01)
An approach to optimize the design of three-phase induction motors for a wide speed range drive is considered. Two operating points in the speed range are taken into consideration. The problem is handled as a constrained optimization problem. An accurate model for the motor in terms of its dimensions has been developed which predicts the motor performance based on about 60 parameters of motor geometry.
Tümleşik Modüler Motor Sürücü Sistemi Tasarımı
Uğur, Mesut; Keysan, Ozan (null; 2017-10-25)
Bu çalışmada, bir Tümleşik Modüler Motor Sürücü (TMMS) sistemi tasarımı gerçekleştirilmiştir. TMMS sistemi için modüler bir kesirli oluklu, konsantre sargılı (FSCW), sabit mıknatıslı senkron motor (PMSM) ile birlikte Galyum Nitrat (GaN) teknolojisine dayalı modüler motor sürücü güç katı tasarımı yapılmıştır. Konvansiyonel sistemlere göre %2’lik verim artışı sağlanmıştır. Tümleşik motor sürücü sistemine uygun DA bara kondansatör seçimi gerçekleştirilmiştir. Interleaving tekniği kullanılarak kondansatör boyut...
Citation Formats
D. Yıldırım, M. H. Akşit, I. ÇADIRCI, and M. Ermiş, “All-SiC Traction Converter for Light Rail Transportation Systems: Design Methodology and Development of 165 kVA Prototype,” Electronics (Switzerland), vol. 11, no. 9, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/97732.