Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Photonic design for color compatible radiative cooling accelerated by materials informatics
Date
2022-10-01
Author
Guo, Jiang
Ju, Shenghong
Lee, Yaerim
Günay, Ahmet Alperen
Shiomi, Junichiro
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
169
views
0
downloads
Cite This
© 2022 Elsevier LtdPassive radiative cooling can dissipate heat load directly through the high transparency atmospheric window (8–13 μm). The conventional strategy for radiative cooling has mainly focused on simultaneously blocking the total solar heating and enhancing the infrared emission, which makes the appearance either specular or diffusive white. Recently proposed colored radiative coolers can realize the colored radiative cooling but with limited color gamut. In this work, we have designed both transmissive and reflective colored radiative coolers that realize radiative cooling with ultra-wide color gamut. The optimal structures are identified with Bayesian optimization by only evaluating less than 1% of the candidate structures, which dramatically accelerates the design process. The optimized transmissive colored radiative cooler can produce standard additive colors and realize sub-ambient cooling effect at moderate environment conditions. The reflective colored radiative cooler is highly transparent in visible light range and can largely reduce the thermal load as well as enhance heat dissipation by radiative heat transfer.
Subject Keywords
Colored radiative cooling
,
Large angle tolerance
,
Materials informatics
,
Transmissive and reflective colors
,
Wide color gamut
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85133470910&origin=inward
https://hdl.handle.net/11511/98289
Journal
International Journal of Heat and Mass Transfer
DOI
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123193
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Low temperature operation of APD for quantum cryptographic applications
Kale, Zuhal; Ergül, Rüyal; Department of Electrical and Electronics Engineering (2005)
This thesis explains low temperature operation of an InGaAs Avalanche Photo Diode (APD) cooled using thermoelectric coolers in order to utilize in the quantum cryptographic applications. A theoretical background for the equipment used in the experiment was provided. Circuitry and mechanics used for the low temperature operation were designed. Performance measures for APD were explained and experiment results were presented.
Fabrication of nanostructured samples for the investigation of near field radiation transfer
Artvin, Zafer; Okutucu Özyurt, Hanife Tuba; Mengüç, M. Pınar; Department of Micro and Nanotechnology (2012)
Radiative heat transfer in nanostructures with sub-wavelength dimensions can exceed that predicted by Planck's blackbody distribution. This increased effect is due to the tunneling of infrared radiation between nanogaps, and can allow the eventual development of nano-thermo-photo-voltaic (Nano-TPV) cells for energy generation from low temperature heat sources. Although near field radiation effects have been discussed for many years, experimental verification of these effects is very limited so far. In this ...
Passive Cooling Assembly for Flat Panel Displays with Integrated High Power Components
Tarı, İlker (2009-08-01)
Passive cooling of flat panel display designs with integrated high power components is investigated with the help of recently available semi-emprical and CFD based heat transfer correlations. A heat-spreader-heat-sink assembly is proposed for effective external natural convection cooling of the display panel. A flat vertical surface and plate finned heat sinks with various fin heights are considered as heat sinks in the assembly. Heat dissipation limits for both types of heat sinks are determined for variou...
Multifunctional metamaterial sensor applications based on chiral nihility
BAKIR, MEHMET; KARAASLAN, MUHARREM; AKGÖL, OĞUZHAN; Sabah, Cumali (2017-11-01)
In this paper, chiral nihility based pressure, density, temperature and moisture content metamaterial sensor applications are investigated in detail. A "chiral nihility'' medium in which both the permittivity and the permeability tend to zero is investigated. Gammadion shaped resonators particularly designed for chiral nihility are introduced. Bandwidths and signal strengths show admissible results. Simulation and experimental results prove that chiral nihility occurred at the resonance frequencies when med...
Current transport mechanisms in low resistive CdS thin films
Günal, İbrahim; Parlak, Mehmet (Springer Science and Business Media LLC, 1997-02-01)
The current transport mechanisms in polycrystalline CdS thin films have been studied as a function of temperature over the temperature range 20-230 K. Conductivity data for the high temperature region has been analysed using Seto's model of thermionic emission. At intermediate temperatures it was found that thermionic emission and tunnelling of carriers through the potential barrier both contribute to the conductivity. Below 100 K Mott's hopping process appears to be the predominant conduction mechanism.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. Guo, S. Ju, Y. Lee, A. A. Günay, and J. Shiomi, “Photonic design for color compatible radiative cooling accelerated by materials informatics,”
International Journal of Heat and Mass Transfer
, vol. 195, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85133470910&origin=inward.