Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Structural and functional evaluation mammalian and plant lipoxygenases upon association with nanodics as membrane mimetics.
Date
2022-07-08
Author
Ulusan, Sinem
Sheraj, Ilir
Stehling, Sabine
Ivanov, Igor
Das, Aditi
Kühn, Hartmut
Banerjee, Sreeparna
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
114
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/98465
Journal
Biophysical chemistry
DOI
https://doi.org/10.1016/j.bpc.2022.106855
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Structural and thermal characterization of PTSA doped polypyrrole-polytetrahydrofuran graft copolymer
Özdilek, Ceren; Hacaloğlu, Jale; Toppare, Levent Kamil; Yagč, Yusuf (2004-01-06)
The thermal degradation processes of p-toluene sulfonate (PTS) doped polypyrrole (PPY) grown from the pyrrole moiety located at both the ends of polytetrahydrofuran (PTHF) have been studied by direct pyrolysis mass spectrometry (DPMS) to gain structural information. To get a better insight, pyrolysis analysis on corresponding homopolymers, PTHF and PPY, have also been carried out. The DPMS data were in accordance with TGA results indicating a significant decrease in thermal stability of the copolymer with r...
Structural and Biological Analysis of Mesoporous Lanthanum Doped beta TCP For Potential Use as Bone Graft Material
Motameni, Ali; Dalgıç, Ali Deniz; ALSHEMARY, AMMAR ZEIDAN GHAILAN; Keskin, Dilek; Evis, Zafer (Elsevier BV, 2020-06-01)
In this study, mesoporous particles of beta-tricalcium phosphate (beta TCP, beta Ca-3(PO4)(2)) and lanthanum (La) doped beta TCP were synthesized using wet precipitation method attached with microwave refluxing system. The obtained materials were characterized and analysed using different sort of techniques such; X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Inductively coupled plasma optical emission spectroscopy (ICP-OES), Brunauer-Emmett-Tell...
Structural and electronic properties of (CnLi)(+) cluster ions
Yazgan, E; Erkoc, A (World Scientific Pub Co Pte Lt, 2005-02-01)
The structural and electronic properties of (CnLi)(+) cluster ions with n = 1-6 and n = 20 have been investigated by performing density functional theory calculations at B3LYP level. The vibrational frequencies of the clusters are also calculated.
Structural and biological assessment of boron doped bioactive glass nanoparticles for dental tissue applications
Rad, Rezai Moonesi; Alshemary, Ammar Zeıdan Ghaılan; Evis, Zafer; Keskin, Dilek; Altunbas, Korhan; Tezcaner, Ayşen (2018-06-01)
In this article, bioactive glass nanoparticles (BG-NPs) doped with boron were synthesized and characterized to evaluate their effects on human dental pulp stem cells (hDPSCs). All synthesized BGs were nano-sized and amorphous in nature. They showed the expected characteristic functional groups and composition close to the designed ones by microstructural characterizations. Porositimetry analysis revealed that increase of boron in the BG composition caused a decrease in the specific surface area, average por...
Structural and electronic properties of PFOS and LiPFOS
Erkoç, Şakir; Erkoc, F (2001-08-13)
The structural and electronic properties of perfluorinated surfactants perfluorooctane sulfonate (PFOS) and lithium perfluorooctane sulfonate (LiPFOS) have been investigated theoretically by performing semi-empirical molecular orbital theory at the level of AM I calculations. The optimized structure and the electronic properties of the molecules are obtained. (C) 2001 Elsevier Science BN. All rights reserved.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Ulusan et al., “Structural and functional evaluation mammalian and plant lipoxygenases upon association with nanodics as membrane mimetics.,”
Biophysical chemistry
, vol. 288, pp. 106855–106855, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/98465.