Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Three dimensional (3D) printing of bio-polymers from agricultural wastes
Download
index.pdf
Date
2022-8-8
Author
Bahçegül, Eylül Gökçe
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
409
views
126
downloads
Cite This
Lignocellulosic biomass, which is a composite structure made up of cellulose, hemicellulose and lignin biopolymers, is the most abundant biopolymer resource on earth. Among the biopolymers found in lignocellulosic agricultural wastes, hemicellulose and lignin receive significantly less attention compared to cellulose for material applications despite the fact that these two biopolymers constitute almost a half of a given biomass. In this context, three novel strategies were developed that render hemicellulose and lignin 3D printable. Corn cobs (CCs) were used as the lignocellulosic resource in which hemicellulosic pastes and CC extracts in the form of thermoreversible cold-setting gels with different formulations were obtained following different extraction approaches and parameters. Water and NaOH contents as well as the extraction parameters such as KOH concentration coupled to the correct 3D printing parameters including printing temperature and speed, extrusion multiplier and layer height was the key to render the pastes and extracts 3D printable. Hemicelluloses containing lignin were rendered 3D printable for the first time without any chemical modifications and without using auxiliary polymers or additives by determining the very narrow process window that enables 3D printability. A blending strategy that relies on thermoplasticity, which involves mixing hemicellulose and lignin with polyvinyl alcohol via solvent casting, was also developed in order to obtain filaments for 3D printing, which allow for the 3D printing of more complex shapes. Thermal, mechanical, chemical, complex and apparent viscosities, morphological and printability properties of the polymers and the 3D printed materials were characterized by different methods.
Subject Keywords
3D printing
,
Hemicellulose
,
Lignin
,
Lignocellulosic biomass
,
Xylan
URI
https://hdl.handle.net/11511/98647
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
3D printing of crude lignocellulosic biomass extracts containing hemicellulose and lignin
Gokce Bahcegul, E.; Bahcegul, Erinc; Özkan, Necati (2022-10-15)
© 2022 Elsevier B.V.Using lignocellulosic biomass, which is composed mainly of cellulose, hemicellulose and lignin, as a biopolymer resource in various polymeric material applications is an attractive option due to its abundance, biodegradability and renewability. Cellulose is the most popular member of the biopolymer trio for material applications, but despite constituting around half of a lignocellulosic biomass, attention hemicellulose and lignin receive is restricted in this sense, which gets even more ...
3D Printing of Hemicellulosic Biopolymers Extracted from Lignocellulosic Agricultural Wastes
Bahcegul, E. Gokce; Bahcegul, Erinc; Özkan, Necati (2020-07-01)
Despite being one of the most abundant biopolymers found in nature after cellulose, hemicellulose is still an underutilized biopolymer. Using this abundant biopolymer in 3D printing applications has a lot of potential, but so far only minor attention has been given to hemicellulose, which includes using its derivative forms together with other polymers for 3D printing. On the other hand, cellulose, in the form of cellulose derivatives or nanocelluloses such as cellulose nanofibers and nanocrystals, receives...
Tarımsal atıklardan elde edilen hemiselüloz temelli biyopolimerlerden ekstrüzyon vasıtası ile filmlerin üretilmesi
Bölükbaşı, Ufuk; Özkan, Necati; Bahçegül, Erinç; Akınalan, Büşra; Erdemir, Duygu(2014)
Majority of materials used in daily life are produced by using petroleum based polymers. However sustainability of such production processes is problematic when it is considered that petroleum is not a renewable resource in addition to the environmental pollution caused by petroleum based products. Currently, biopolymers are more frequently utilized as an alternative to petroleum based polymers. Due to their low cost because of the waste status and abundance, lignocellulosic agricultural wastes are among th...
Distinct patterns of sedimentary phosphorus fractionation and mobilization in the seafloor of the Black Sea, Marmara Sea and Mediterranean Sea
Akçay, İsmail; Yücel, Mustafa (2023-03-10)
Phosphorus (P) is a key element to all life that is used for structural and functional component of all organisms. The cycling of sedimentary P may differ depending on the redox-conditions of the overlying waters affecting the dynamics, and distribution of P-fractions and the elements that are highly coupled to P cycle. Though biogeochemistry of water column in the three interconnected marine basins of Black, Marmara and Mediterranean Seas have been studied extensively, few studies were carried out to under...
Combined effect of point defects and layer number on the adsorption of benzene and toluene on graphene
Akay, Tugce Irfan; Toffoli, Daniele; Toffoli, Hande (Elsevier BV, 2019-06-30)
Understanding the adsorption properties of organic molecules on graphene-based substrates is important for such applications as air and water filters. Pristine graphene is often the model substrate used in the theoretical investigations of this problem. While useful, pristine single-layer graphene is however an idealized model. In this work, we assess the effect of the presence of point defects (single vacancy, divacancy, and the Stone-Wales defect) in single-layer and bilayer graphene on the energetics of ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. G. Bahçegül, “Three dimensional (3D) printing of bio-polymers from agricultural wastes,” Ph.D. - Doctoral Program, Middle East Technical University, 2022.