Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A New Ratio-Metric pH Probe, "ThiAKS Green" for Live-Cell pH Measurements
Download
index.pdf
Date
2023-3-01
Author
Akyol, Ali
Baykal, Doruk
Akdağ, Akın
Sensoy, Ozge
Son, Çağdaş Devrim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
266
views
49
downloads
Cite This
Deviation of the H+ concentration from optimum values within the organelles is closely associated with irregular cellular functions that cause the onset of various diseases. Therefore, determining subcellular pH values in live cells and tissues is valuable for diagnostic purposes. In this study, we report a novel ratiometric fluorescence probe 1H-pyrazole-3-carboxylic acid, 4-(benzo[d]thiazol-2-yl)-3-(2,4-dihydroxy-3-methylphenyl)-1H-pyrazole-5-carboxylicacid4-(2-benz othiazolyl)-5-(2,4-dihydroxy-3-methylphenyl), to which we will refer as ThiAKS Green (Thiazole AKyol shifting green), that is pH sensitive. The results presented here show that the probe can penetrate the cell membrane in less than 30 minutes and does not show any detectable toxicity. The measured color shifts up on pH change are linear and most significant around physiological pH (pKa=7.45), thus making this probe suitable for live-cell imaging and intracellular pH measurements. During the long-incubation periods following the application of the probe and the fluorescent microscopy measurements, it shows stable properties and is easy to detect in live cells. In conclusion, the results suggest that ThiAKS Green can be used to obtain precise information on the H+ distribution at various compartments of the live cells.
Subject Keywords
Fluorescent probe
,
ratiometric sensor
,
intracellular pH
,
cell imaging
,
fluorescent microscopy
,
INTRACELLULAR PH
,
CALCIUM
,
Digital storage
,
Magnetic storage
,
Signal processing
,
Solid state devices
URI
https://hdl.handle.net/11511/99670
Journal
PHOTONIC SENSORS
DOI
https://doi.org/10.1007/s13320-022-0666-5
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Automatic detection of mitochondria from electron microscope tomography images: a curve fitting approach
Tasel, Serdar F.; HASSANPOUR, REZA; Mumcuoğlu, Ünal Erkan; Perkins, Guy; Martone, Maryann (2014-02-18)
Mitochondria are sub-cellular components which are mainly responsible for synthesis of adenosine tri-phosphate (ATP) and involved in the regulation of several cellular activities such as apoptosis. The relation between some common diseases of aging and morphological structure of mitochondria is gaining strength by an increasing number of studies. Electron microscope tomography (EMT) provides high-resolution images of the 3D structure and internal arrangement of mitochondria. Studies that aim to reveal the c...
A validated active contour method driven by parabolic arc model for detection and segmentation of mitochondria
Tasel, Serdar F.; Mumcuoğlu, Ünal Erkan; Hassanpour, Reza Z.; Perkins, Guy (2016-06-01)
Recent studies reveal that mitochondria take substantial responsibility in cellular functions that are closely related to aging diseases caused by degeneration of neurons. These studies emphasize that the membrane and crista morphology of a mitochondrion should receive attention in order to investigate the link between mitochondria] function and its physical structure. Electron microscope tomography (EMT) allows analysis of the inner structures of mitochondria by providing highly detailed visual data from l...
Detecting g-protein coupled receptor interactions using enhanced green fluorescent protein reassembly
Kumaş, Gözde; Son, Çağdaş Devrim; Yanık, Tülin; Department of Biotechnology (2012)
The largest class of cell surface receptors in mammalian genomes is the superfamily of G protein-coupled receptors (GPCRs) which are activated by a wide range of extracellular responses such as hormones, pheromones, odorants, and neurotransmitters. Drugs which have therapeutic effects on a wide range of diseases are act on GPCRs. In contrast to traditional idea, it is recently getting accepted that G-protein coupled receptors can form homo- and hetero-dimers and this interaction could have important role on...
A brighter method to illuminate the dark side of adhesion G protein-coupled receptors: detection of the ADGRG1 dimers by Bioluminescence Resonance Energy Transfer (BRET)
Murat, Merve; Son, Çağdaş Devrim; Cevheroğlu, Orkun; Department of Molecular Biology and Genetics (2021-9-7)
G protein-coupled receptors (GPCRs) form oligomeric complexes in living cells, and these complex structures affect the receptor maturation, trafficking, and signaling processes. Adhesion G protein-coupled receptors (aGPCRs), the second-largest sub-family of GPCRs, interact with extracellular matrix and ligands on the adjacent cell surface to modulate tissue and organ development. However, it is still unclear whether aGPCRs interact with each other. In this study, ADGRG1 was used as a model aGPCR to investi...
Fast Screening of Protein-Protein Interactions Using Forster Resonance Energy Transfer (FRET-) Based Fluorescence Plate Reader Assay in Live Cells
Durhan, Seyda Tugce; Sezer, Enise Nalli; Son, Çağdaş Devrim; Küçük Baloğlu, Fatma (2022-11-01)
Protein-protein interactions (PPIs) have great importance for intracellular signal transduction and sustaining the homeostasis of an organism. Thus, the identification of PPIs is necessary to better understand the downstream signaling functions of the proteins in healthy and pathological conditions. Forster resonance energy transfer (FRET) between fluorescent proteins (FPs) is a powerful tool for detecting PPIs in living cells. In literature, FRET analysis methods such as donor photobleaching (FLIM), accept...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Akyol, D. Baykal, A. Akdağ, O. Sensoy, and Ç. D. Son, “A New Ratio-Metric pH Probe, “ThiAKS Green” for Live-Cell pH Measurements,”
PHOTONIC SENSORS
, vol. 13, no. 1, pp. 0–0, 2023, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/99670.