Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An approximate method for the nonlinear seismic analysis of soil layers
Download
006792.pdf
Date
1989
Author
Vural, Evren Meltem
Metadata
Show full item record
Item Usage Stats
133
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/10004
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
An approximation method for design applications related to sway in RC framed buildings
TEKELİ, Hamide; Atimtay, E.; TÜRKMEN, Mustafa (2015-09-01)
In this paper, an approximate method is proposed for determining sway of multistory RC buildings subjected to various types of lateral loads. The calculation of both fundamental period and stability index in RC building requires the sway term at each story level. Using approximate method design engineers can estimate sway terms at each story level. The developed analytical expressions are inserted into fundamental period and stability index equations to replace the sway terms, which yields modified equation...
An Integral-Equation-Based Method for Efficient and Accurate Solutions of Scattering Problems with Highly Nonuniform Discretizations
Khalichi, Bahram; Ergül, Özgür Salih; Erturk, Vakur B. (2021-01-01)
© 2021 IEEE.We present a full-wave electromagnetic solver for analyzing multiscale scattering problems with highly nonuniform discretizations. The developed solver employs an elegant combination of potential integral equations (PIEs) with the magnetic-field integral equation (MFIE) to improve the iterative convergence properties of matrix equations obtained via method of moments, especially derived from highly nonuniform discretizations for which PIEs suffer from ill conditioning. A mixed-form multilevel fa...
An approximate model for the dynamic analysis of thermoelastic cylindrical shells
Muneeb, Anwar-ul-Haq; Mengi, Yalçın; Birlik, Gülin; Department of Engineering Sciences (1990)
An approximate model for performance measurement in base-stock controlled assembly systems
Rodoplu, Umut; Avşar, Zeynep Müge; Department of Industrial Engineering (2004)
The aim of this thesis is to develop a tractable method for approximating the steady-state behavior of continuous-review base-stock controlled assembly systems with Poisson demand arrivals and manufacturing and assembly facilities modeled as Jackson networks. One class of systems studied is to produce a single type of finished product assembling a number of components and another class is to produce two types of finished products allowing component commonality. The performance measures evaluated are the exp...
An Approximate method to calculate the stiffness of shallow foundations subjected to eccentric loads
Durucan, Ayşe Ruşen; Yılmaz, Mustafa Tolga; Department of Engineering Sciences (2016)
A computationally simple method to calculate the static response of arbitrarily shaped shallow foundations subjected to eccentric loading is proposed. A theoretical relationship to estimate the area beneath the foundation that is contact with the load bearing support is developed. This relationship yielded an equation to calculate rocking angle of an arbitrarily shaped foundation under any load eccentricity. Consequently, a simple theoretical model capable of simulating the effects of material and geometric...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. M. Vural, “An approximate method for the nonlinear seismic analysis of soil layers,” Middle East Technical University, 1989.