Selective sulfate sorption from boric acid factory process liquor: Chitosan-bentonite biocomposite film synthesis as sorbent

Kaya, Fatih
Ozer, Ahmet
Chitosan is a natural polymer that is renewable, biocompatible, and biodegradable. Bentonite is a natural mineral with low environmental effects. For this reason, chitosan- bentonite biocomposite film was synthesized as a sorbent and its characterized by FT-IR, SEM, EDX, CHNS elemental analysis and thermal analysis techniques. The sorbent was utilized for selective sulfate (SO42 &#xe213; ) sorption from boric acid factory process liquor, because one of the most important problems in the boric acid production process is sulfate impurity. The sulfate sorption capacity in the acidic region (pH < 5) was determined as 308.38 mg/g and the equilibrium time was determined as 10 min. It has also been found that the sorbent is regenerative and reusable. Sulfate sorption took place by means of primary amine (-NH2) groups in the structure of the biocomposite. In addition, it was considered that the synthesized sorbent acts as a weakly basic anion exchanger resin. It was determined that the total sulfate salt concentration in the process liquor medium decreased by approximately 30.36% depending on the sulfate sorption. In this context, it is considered that the boric acid factory process liquor has been successfully purified.


Recycling of Polymer Waste Using Different Techniques
Sivri, Seda; Sezgi, Naime Aslı; Dilek Hacıhabiboğlu, Çerağ; Department of Chemical Engineering (2023-1-26)
Polylactic acid (PLA) is the most widely known renewable biodegradable polymer due to its mass production, good processability, optical, mechanical, thermal, and barrier properties. Hence, the production rate of PLA increased gradually during the last decade. However, PLA is known to have slow degradation rate in soil and marine environments, leading to significant waste accumulation with widespread usage of the polymer. Thus, recycling of PLA waste will become a significant environmental concern in near fu...
Catalytic ozonation of synthetic wastewaters containing three different dyes in a fluidized bed reactor
Balcı, Ayşe İrem; Özbelge, Ayşe Tülay; Department of Chemical Engineering (2011)
Environmental regulations have imposed limitations on a wide variety of organic and inorganic pollutants in industrial textile wastewaters. There are several degradation methods used in literature studies. Among these methods ozonation is one of the most considered way to degrade refractory chemicals in textile wastewaters. In recent years, catalytic ozonation as being one of the advanced oxidation processes (AOPs), is applied to reduce the ozone consumption and to increase the Chemical Oxygen Demand (COD) ...
Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix
Liu, Ruijia; Liu, Guijian; Yousaf, Balal; Niu, Zhiyuan; Abbas, Qumber (2022-01-01)
Biomass, as a renewable and sustainable energy resource, can be converted into environmentally friendly and practically valuable biofuels and chemical materials via pyrolysis. However, the process optimization and pyrolysis efficiency are restricted by the limited perception of the complicated mechanisms and kinetics for biomass pyrolysis. Here, to establish an in-depth mechanism model for biomass pyrolysis, we presented a novel investigation for the thermal evolutions and pyrolysis kinetics of the function...
Design of an outdoor stacked - tubular reactor for biological hydrogen production
KAYAHAN, Emine; Eroglu, Inci; Koku, Harun (Elsevier BV, 2016-11-02)
Photofermentation is one alternative to produce hydrogen sustainably. The photobioreactor design is of crucial importance for an economically feasible operation, and an optimal design should provide uniform velocity and light distribution, low pressure drop, low gas permeability and efficient gas-liquid separation. A glass, stacked tubular bioreactor aimed at satisfying these criteria has been designed for outdoor photofermentative hydrogen production by purple non sulfur bacteria. The design consists of 4 ...
Polylactic acid recycling with environmentally benign fluids
Bozcuoğlu, Çağla; Dilek Hacıhabiboğlu, Çerağ; Sezgi, Naime Aslı; Department of Chemical Engineering (2022-2)
In the past few decades, petroleum-based polymers have been replaced by biodegradable polymers since they bring about environmental problems. Polylactic acid (PLA) is a good candidate for this replacement due to its biocompatible and biodegradable nature and favorable mechanical and thermal properties. Due to the increase in usage and demand, there will be a PLA waste problem in the near future. Although PLA is classified as a biodegradable polymer, only a few microorganisms, which are not present in all so...
Citation Formats
F. Kaya and A. Ozer, “Selective sulfate sorption from boric acid factory process liquor: Chitosan-bentonite biocomposite film synthesis as sorbent,” MINERALS ENGINEERING, vol. 187, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: