Integrative Omics Strategies for Rare Gynecological Diseases

2022-09-18
GYNOCARE COST Action Training School

Suggestions

INTEGRATIVE NETWORK MODELLING OF DRUG RESPONSES IN CANCER FOR REVEALING MECHANISM OF ACTION
Ünsal Beyge, Şeyma; Tunçbağ, Nurcan; Department of Medical Informatics (2021-9-6)
Classification of cancer drugs is crucial for drug repurposing since the cost and innovation deficit make new drug development processes challenging. Heterogeneity of cancer causes drug classification purely based on known mechanism of action (MoA) and the list of target proteins to be insufficient. Multi-omic data integration is necessary for a systems biology perspective to understand molecular mechanisms and interactions between cellular entities underlying the disease. This study integrates drug-target ...
Integrative Modeling of the Tumor Specific Structural Networks in Human Cancers
Tunçbağ, Nurcan (2017-05-15)
Integrative Predictive Modeling of Metastasis in Melanoma Cancer Based on MicroRNA, mRNA, and DNA Methylation Data
Kutlay, Aysegul; Aydın Son, Yeşim (2021-09-01)
Introduction: Despite the significant progress in understanding cancer biology, the deduction of metastasis is still a challenge in the clinic. Transcriptional regulation is one of the critical mechanisms underlying cancer development. Even though mRNA, microRNA, and DNA methylation mechanisms have a crucial impact on the metastatic outcome, there are no comprehensive data mining models that combine all transcriptional regulation aspects for metastasis prediction. This study focused on identifying the regul...
Integrative network modelling of the dasatinib treatment in glioblastoma stem cells
Senger, Gökçe; Tunçbağ, Nurcan; Department of Bioinformatics (2019)
Glioblastoma (GBM), the most aggressive type of the glial tumours, is thought to be widely promoted by stem-like cells. Although certain cancer types have been radically treated with Receptor Tyrosine Kinases (RTKs) inhibitors, prior studies demonstrate that treatment Glioblastoma Stem Cells (GSCs) with RTK inhibitors led to dynamic interconversion from proliferative to slow-cycling, persistent state. In this work, we use the publicly available RNA-Seq and ChIP-Seq data in naive patient-derived GBM cell lin...
Integromic Analysis of Genetic Variation and Gene Expression Identifies Networks for Cardiovascular Disease Phenotypes
Yao, Chen; Chen, Brian H.; Joehanes, Roby; Otlu, Burcak; Zhang, Xiaoling; Liu, Chunyu; Huan, Tianxiao; Tastan, Oznur; Cupples, L. Adrienne; Meigs, James B.; Fox, Caroline S.; Freedman, Jane E.; Courchesne, Paul; O'Donnell, Christopher J.; Munson, Peter J.; Keles, Sunduz; Levy, Daniel (Ovid Technologies (Wolters Kluwer Health), 2015-02-10)
Background-Cardiovascular disease (CVD) reflects a highly coordinated complex of traits. Although genome-wide association studies have reported numerous single nucleotide polymorphisms (SNPs) to be associated with CVD, the role of most of these variants in disease processes remains unknown.
Citation Formats
S. Özcan Kabasakal, “Integrative Omics Strategies for Rare Gynecological Diseases,” presented at the GYNOCARE COST Action Training School, Skopje, Makedonya, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/100362.