Sorption of BB41 dye molecules using chitosan based particles from aqueous solutions: A kinetic and thermodynamic evaluation

2022-08-01
Demirtas, Hulya
Tasar, Seyda
Kaya, Fatih
Ozer, Ahmet
In this study, starting from chitosan is a hydrophilic polymer with positively charged, it was aimed to produce chitosan-based particles and to be evaluated as a sorbent. Chitosan-based polymeric particles production was carried out by the precipitation-collection method from chitosan. Chitosan and chitosan-based sorbent were characterized. For this purpose, SEM and FTIR analyzes were used. Sorption activities of the chitosan-based polymeric particles were investigated for basic dye (basic blue 41, BB41). The effect of various sorption parameters (temperature, initial pH value, chitosan amount, initial dye concentration, contact time, etc.) on the sorption efficiency of BB41 dye molecules was investigated. The optimum sorption conditions were determined. The optimum temperature of solution, initial pH value, chitosan amount, contact time and initial BB41 dye concentration were determined as 25 degrees C, 10.5 +/- 0.02, 1 g/L, 240 min and 50 ppm, respectively. Sorption capacities at 25, 35, 45, and 55 celcius were determined as 1.710, 1.410, 1.360, and 1.200 mg/g, respectively. In addition, the sorption yields were determined as 85.00%, 73.21%, 67.86%, and 60.00%, respectively. Experimental results were evaluated by applying Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich's (DR) isotherm models. It was determined that the obtained data fit well with the Langmuir isotherm model. The maximum sorption capacity (qmax) was calculated to be 1.920 mg/g. To calculate kinetic parameters, pseudofirst-order, pseudo-second-order, Elovich, and intraparticle diffusion kinetic model equations were used in the study. It was determined that the pseudo-second-order model was better suited to explain the experimental data. Using the pseudo-second-order kinetic model equation, the maximum sorption capacities (qc,h) for 25, 35, 45, and 55 degrees C were calculated to be 1.720, 1.490, 1.380, and 1.240 mg/g, respectively. It was determined that the desorption activities of chitosan particles were over 99.5%. The chitosan particles retained their physical stability under the specified desorption conditions. It was decided that it was a suitable sorbent for reuse.
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING

Suggestions

Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation
Kula, Ibrahim; Ugurlu, Mehmet; Karaoglu, M. Hamdi; Celik, Ali (2008-02-01)
This study is aimed to remove Cd(II) ions from aqueous solutions by adsorption. As adsorbent, activated carbon prepared from olive stone, an agricultural solid by-product was used. Different activating agent (ZnCl2) amounts and adsorbent particle size were studied to optimize adsorbent surface area. The adsorption experiments were conducted at different parameters such as, adsorbent dose, temperature, equilibrium time and pH. According to the experiments results, the equilibrium time, optimum pH, adsorbent ...
Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells
Ozdemir, Yagmur; Uregen, Nurhan; DEVRİM, YILSER (2017-01-26)
In this study, phosphoric acid doped PBI nanocomposite membranes were prepared by dispersion of various amounts of inorganic nanoparticles in PBI polymer followed by phosphoric acid (H3PO4) doping for high temperature proton exchange membrane fuel cells (HT-PEMFC). All of the PBI composite membranes were cast from the same FBI polymer with the same molecular weight. Titanium dioxide (TiO2), silicon dioxide (SiO2) and inorganic proton conductor zirconium phosphate (ZrP) were used as inorganic fillers. The PB...
Phase transition of chemically synthesized FePt nanoparticles under high pressure
ŞİMŞEK, TELEM; Karci, Ozgur; ÖZCAN, ŞADAN (The Scientific and Technological Research Council of Turkey, 2018-01-01)
We present the results of a study related to phase transformation of chemically synthesized FePt nanoparticles under high pressure from face-centered cubic into face-centered tetragonal structure. As-synthesized nanoparticles are around 4.5 nm and show superparamagnetic behavior at 300 K. After annealing under 60 bar pressure of hydrogen at 400 degrees C for 2 h, nanoparticles exhibit strong ferromagnetic behavior with 5391 Oe coercivity. Results show that high-pressure annealing lowers the decomposition te...
Sorption Efficiency of Chitosan Nanofibers toward Metal Ions at Low Concentrations
Horzum, Nesrin; Boyacı, Ezel; Eroglu, Ahmet E.; Shahwan, Talal; Demir, Mustafa M. (2010-12-01)
Chitosan fibers showing narrow diameter distribution with a mean of 42 nm were produced by electrospinning and utilized for the sorption of Fe(III), Cu(II), Ag(I), and Cd(II) ions from aqueous solutions. The ion concentrations in the supernatant solutions were determined using inductively coupled plasma-mass spectrometry (ICP-MS). The filtration efficiency of the fibers toward these ions was studied by both batch and microcolumn methods. High efficiency in sorption of the metal ions was obtained in the both...
Vulcan-Supported Pt Electrocatalysts for PEMFCs Prepared using Supercritical Carbon Dioxide Deposition
Bayrakceken, Ayse; Smirnova, Alevtina; Kitkamthorn, Usanee; Aindow, Mark; Tuerker, Lemi; Eroğlu, İnci; ERKEY, CAN (Informa UK Limited, 2009-01-01)
In this study, supercritical carbon dioxide (scCO(2)) deposition was used to prepare vulcan-supported Pt (Pt/Vulcan) electrocatalysts for proton exchange membrane fuel cells (PEMFCs), and the effects of process variables on the properties of the electrocatalysts were investigated. The two different methods used to reduce the organometallic precursor were thermal reduction in nitrogen at atmospheric pressure and thermal reduction in scCO(2). In the former method, the maximum Pt loading achieved was 9%, and t...
Citation Formats
H. Demirtas, S. Tasar, F. Kaya, and A. Ozer, “Sorption of BB41 dye molecules using chitosan based particles from aqueous solutions: A kinetic and thermodynamic evaluation,” JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, vol. 10, no. 4, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/100818.