Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells
Date
2017-01-26
Author
Ozdemir, Yagmur
Uregen, Nurhan
DEVRİM, YILSER
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
252
views
0
downloads
Cite This
In this study, phosphoric acid doped PBI nanocomposite membranes were prepared by dispersion of various amounts of inorganic nanoparticles in PBI polymer followed by phosphoric acid (H3PO4) doping for high temperature proton exchange membrane fuel cells (HT-PEMFC). All of the PBI composite membranes were cast from the same FBI polymer with the same molecular weight. Titanium dioxide (TiO2), silicon dioxide (SiO2) and inorganic proton conductor zirconium phosphate (ZrP) were used as inorganic fillers. The PBI based composite membranes were characterized in terms of their acid uptake and acid leaching properties, mechanical properties, chemical stabilities in N-N Dimethylacetamide (DMAc) and impedance analyses. Thermal gravimetric analysis confirmed the improved thermal stability of the PBI composite membranes. The existence of inorganic fillers was improved the acid retention capability. Electrochemical Impedance Spectroscopy (EIS) showed that the introduction of 5 wt. % SiO2 or 5 wt. % ZrP helps to increase proton conductivity. The composite membrane with TiO2 retained low conductivity values than pristine PBI and this is a result of its non-uniform membrane structure. The highest proton conductivity of 0.200 S/cm was obtained for PBI/ZrP composite membrane with the highest value of H3PO4 doping level. Nyquist plots are drawn for all the membranes at different temperatures and the plots showed good fit with Randel's circuit. As a result the experimental results suggested that the PBI based composite membranes may be a promising electrolyte used in HT-PEMFC. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Membrane fuel cells
,
High temperature proton exchange
,
Zirconium phosphate
,
Silicon dioxide
,
Titanium dioxide
,
Composite membrane
,
Polybenzimidazole
URI
https://hdl.handle.net/11511/66331
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2016.04.132
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells
Uregen, Nurhan; Pehlivanoglu, Kubra; Ozdemir, Yagmur; DEVRİM, YILSER (2017-01-26)
In this study, phosphoric acid doped Polybenzimidazole/Graphene Oxide (PBI/GO) nano composite membranes were prepared by dispersion of various amounts of GO in PBI polymer matrix followed by phosphoric acid doping for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. The structure of the PBI/GO composite membranes was investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and by thermogravimetric analysis (TGA). The introduction of GO into the FBI polymer matri...
Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells
DEVRİM, YILSER; Devrim, Huseyin; Eroğlu, İnci (2016-06-22)
Polybenzimidazole/Silicon dioxide (PBI/SiO2) hybrid membranes were prepared and characterized as alternative materials for high temperature proton exchange membrane fuel cell (HT-PEMFC). The PBI/SiO2 membranes were cast from a PBI polymer synthesized in the laboratory and contained 5 wt. % SiO2 as inorganic filler. Scanning electron microscopy (SEM) analysis showed that the uniform and homogeneous distribution of SiO2 particles in the hybrid membrane. The existence SiO2 has improved the acid retention and p...
Nafion/titanium silicon oxide nanocomposite membranes for PEM fuel cells
DEVRİM, YILSER; Erkan, Serdar; BAÇ, NURCAN; Eroğlu, İnci (2013-04-01)
In the present study, Nafion/Titanium Silicon Oxide (TiSiO4) nanocomposite membranes were prepared by recasting method for proton exchange membrane fuel cells. The composite membrane containing 10wt% TiSiO4 had a membrane thickness of 80 mu m. The membrane was characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). SEM and XRD results have proven the uniform and homogeneous distribution of TiSiO4 in Nafion, and consequently, the crystalline character of ...
Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique
Devrim, Yilser; Erkan, Serdar; BAÇ, NURCAN; Eroğlu, İnci (2012-11-01)
electrode assemblies with Nafion/nanosize titanium silicon dioxide (TiSiO4) composite membranes were manufactured with a novel ultrasonic-spray technique and tested in proton exchange membrane fuel cell (PEMFC). Nafion/TiO2 and Nafion/SiO2 nanocomposite membranes were also fabricated by the same technique and their characteristics and performances in PEMFC were compared with Nafion/TiSiO4 mixed oxide membrane. The composite membranes have been characterized by thermogravimetric analysis, scanning electron m...
PEM fuel cell short stack performances of silica doped nanocomposite membranes
DEVRİM, YILSER; Devrim, Huseyin (2015-06-29)
In this study, an air-cooled Proton Exchange Membrane Fuel Cell (PEMFC) short stack with Nafion/Silica nanocomposite membrane was designed and fabricated for net 100 W net power output to improve the stack performance at low relative humidity conditions. Composite membrane was prepared by solution casting method. Gas Diffusion Electrodes (GDE's) were produced by ultrasonic spray coating technique. Short stack design was based on electrochemical data obtained at 0.60 V was 0.45 A/cm(2) from performance tests...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Ozdemir, N. Uregen, and Y. DEVRİM, “Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 2648–2657, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66331.