Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nonlinear aeroservoelastic modelling and analysis of aircraft with control surface freeplay
Download
thesis_UY_v01_2022_12_22.pdf
Date
2022-11-24
Author
Yurtsever, Utku
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
418
views
649
downloads
Cite This
In this study, nonlinear aeroservoelastic analysis of aircraft with control surface freeplay is performed using the fictitious mass approach. For the demonstration of the nonlinear aeroservoelastic analysis methodology, an available very light aircraft (VLA) design configuration is selected. The aeroelastic model of the aircraft is obtained by combining the structural and aerodynamic models of the aircraft, which are prepared by the finite element modelling and analysis tool MSC.Patran/MSC.Nastran and the aeroelastic solver ZAERO, respectively. Nonlinear aeroservoelastic model of the aircraft is obtained by integrating the control surface freeplay models and the flight control algorithm created using MATLAB. The nonlinear effects of different control surface freeplays on the aircraft are investigated at various flight conditions. The results with aileron, elevator, and rudder freeplays show that for the particular aircraft studied, elevator is the most critical control surface in terms of nonlinear aeroservoelastic behavior of the aircraft leading to instability, and the freeplay in the rudder has no effect on the instability of the aircraft.
Subject Keywords
Aeroelasticity
,
Aeroservoelasticity
,
Nonlinear aeroservoelastic modelling
,
Freeplay
,
Fictitious mass approach
URI
https://hdl.handle.net/11511/101193
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Computational Analysis of a Model Scale Helicopter Rotor in Ground Effect
Şahbaz, Mehmet; Sezer Uzol, Nilay; Kurtuluş, Dilek Funda (2017-09-22)
In this study, a numerical investigation of ground effect of a helicopter rotor is investigated with Computational Fluid Dynamics method. For this purpose, a model scale 2 bladed helicopter rotor is chosen. An experimental study is referred for comparison and validity of CFD method.
Nonlinear Static Aeroelastic Behaviour of Composite Missile Fin with Interlaminar Damage
Özkaya, Özge; Kayran, Altan (2017-09-22)
Nonlinear static aeroelastic behavior of a basic composite missile fin is analyzed by means of two-way coupled FSI simulation and the effects of composite damages are presented. The configuration has been simulated by coupling the two commercial solvers ANSYS CFX for the fluid mechanical simulation with ANSYS Mechanical for the structural simulation. 3D composite fin geometry is constructed using ANSYS ACP tool. Interlaminar damage cases were investigated and the influence of the damage locations on the sta...
Nonlinear resonances of axially functionally graded beams rotating with varying speed including Coriolis effects
Lotfan, Saeed; Anamagh, Mirmeysam Rafiei; Bediz, Bekir; Ciğeroğlu, Ender (2021-11-01)
The purpose of the current study was to develop an accurate model to investigate the nonlinear resonances in an axially functionally graded beam rotating with time-dependent speed. To this end, two important features including stiffening and Coriolis effects are modeled based on nonlinear strain relations. Equations governing the axial, chordwise, and flapwise deformations about the determined steady-state equilibrium position are obtained, and the rotating speed variation is considered as a periodic distur...
AERODYNAMIC ANALYSIS OF SUPERSONIC FLOW OVER A SIMPLE AIRCRAFT GEOMETRY BY USING CST AND PANEL METHODS
Uğur, Levent; Turan, Sena; Gedik, Ramazan Kürşat; Adam, Ali Ata; Sezer Uzol, Nilay; Ertem, Sercan; Ayan, Erdem (2021-09-10)
In this paper, the aerodynamic properties of a selected aircraft geometry are calculated in supersonic flow condition using PANAIR. PANAIR is an open-source high-order panel method solver for irrotational and inviscid flows and it is more efficient than higher fidelity CFD analyses for the preliminary design process since it is faster and easier to use. A batch of supersonic analyses is completed for different wing/body configurations for the selected aircraft geometry and with various panel g...
MODELING OF STORE SEPARATION BEHAVIOR BASED ON A NEURAL NETWORK AND UNSTEADY FLOW SOLUTIONS
Erinç, Erdoğan; Tuncer, İsmail Hakkı (null; 2015-09-10)
In this study a neural network based method is developed for the prediction of separation characteristics of external store weapons carried under aircraft wings. The method is based on an artificial neural network trained by high fidelity unsteady flow solutions. The unsteady flow solutions as the store separates from the carriage and the resulting six degrees of freedom motion of the store are computed conditions by a commercial flow solver for various flight conditions. The trajectory of the store and the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Yurtsever, “Nonlinear aeroservoelastic modelling and analysis of aircraft with control surface freeplay,” M.S. - Master of Science, Middle East Technical University, 2022.