Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The use of natural zeolite as catalyst in the production of ethylbenzene
Download
035732.pdf
Date
1994
Author
Kartal, Özlem Esen
Metadata
Show full item record
Item Usage Stats
119
views
109
downloads
Cite This
URI
https://hdl.handle.net/11511/10121
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
The use of raw perlite in rapid filters for drinking water treatment
Çoker, Ahmet Nuri; Uluatam, Semra Siber; Department of Civil Engineering (1989)
The use of Silicon Wafer Barriers in the Electrochemical Reduction of Solid Silica to Form Silicon in Molten Salts
Akpınar, Burcu; ERDOĞAN, MUSTAFA; Akduman, B.; Karakaya, İshak (2017-06-01)
Nowadays, silicon is the most critical element in solar cells and/or solar chips. Silicon having 98 to 99% Si as being metallurgical grade, requires further refinement/purification processes such as zone refining [1,2] and/or Siemens process [3] to upgrade it for solar applications. A promising method, based on straightforward electrochemical reduction of oxides by FFC Cambridge Process [4], was adopted to form silicon from porous SiO2 pellets in molten CaCl2 and CaCl2-NaCl salt mixture [5]. It was reported...
The use of pyrolysis mass spectrometry to investigate polymerization and degradation processes of methyl amine-based benzoxazine
Bagherifam, Shahla; Uyar, Tamer; Ishida, Hatsuo; Hacaloğlu, Jale (2010-06-01)
In this study, direct pyrolysis mass spectrometry, DP-MS, was applied to investigate curing and polymerization mechanisms of phenol and methyl amine-based benzoxazine monomer, and thermal decomposition and crosslinking characteristics of the corresponding polybenzoxazine. The results indicated opposing polymerization reaction routes besides the generally accepted one. The cleavage of C-O bonds of the oxazine rings either followed by transformation into a polymer constituting ortho or para substituted phenol...
The use of gold and silver nanoparticles for surface enhanced fluorescence (SEF) of Dyes
Öztürk, Tacettin; Volkan, Mürvet; Department of Chemistry (2010)
This study focuses on preparing surface enhanced fluorescence (SEF) substrates for use in the enhancement of the emission signal of rhodamine B and fluorescein dyes. Fluorescence spectroscopy has been widely utilized owing to its high sensitivity. SEF is a process where the interactions of fluorophores with the localized surface plasmons of metal nanoparticles results in fluorescence enhancement, increased photostability and rates of system radiative decay which leads to a decreased lifetime. One of the mos...
The use of microfluidization for the production of xanthan and citrus fiber-based gluten-free corn breads
OZTURK, Oguz Kaan; Mert, Behiç (2018-10-01)
Corn gluten meal is an underutilized byproduct due to its hydrophobic nature although it contains high amount of protein. The primary objectives of this study were to enhance the water holding capacity of this protein-rich byproduct with microfluidization technique and use it in bread-making formulations instead of gluten with the addition of different supplements. The increase in stability, surface area, and consequently water holding capacity with microfluidization resulted in the formation of compatible ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. E. Kartal, “The use of natural zeolite as catalyst in the production of ethylbenzene,” Middle East Technical University, 1994.