Hide/Show Apps

The use of Silicon Wafer Barriers in the Electrochemical Reduction of Solid Silica to Form Silicon in Molten Salts

2017-06-01
Akpınar, Burcu
ERDOĞAN, MUSTAFA
Akduman, B.
Karakaya, İshak
Nowadays, silicon is the most critical element in solar cells and/or solar chips. Silicon having 98 to 99% Si as being metallurgical grade, requires further refinement/purification processes such as zone refining [1,2] and/or Siemens process [3] to upgrade it for solar applications. A promising method, based on straightforward electrochemical reduction of oxides by FFC Cambridge Process [4], was adopted to form silicon from porous SiO2 pellets in molten CaCl2 and CaCl2-NaCl salt mixture [5]. It was reported that silicon powder contaminated by iron and nickel emanated from stainless steel cathode, consequently disqualified the product from solar applications. SiO2 pellets sintered at 1300oC for 4 hours, were placed in between pure silicon wafer plates to defeat the contamination problem. Encouraging results indicated a reliable alternative method of direct solar grade silicon production for expanding solar energy field.