Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Estimation of Locally Stationary Graph Processes from Incomplete Realizations
Date
2022-01-01
Author
Canbolat, Abdullah
Vural, Elif
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
189
views
0
downloads
Cite This
Stationarity is a well-studied concept in signal processing and the concept of stationary random processes has been extended to graph domains in several recent works. Meanwhile, in many scenarios a globally stationary process model may fail to accurately represent the correlation patterns of the data on the whole graph, e.g. when data is acquired on big graphs or when the behavior of the process varies significantly throughout the graph. In this work, we first propose a locally stationary graph process model, where the overall graph process is expressed through a combination of several local models. We then propose an algorithm that learns a locally stationary graph process model from partially observed realizations of the process. Experimental results show that the proposed locally stationary process model can provide significant gain in signal estimation performance compared to globally stationary models, even in cases where the process is highly stationary.
Subject Keywords
Graph processes
,
locally stationary processes
,
node-varying graph filter
,
non-stationary processes
,
vertex-frequency spectrum
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85142769073&origin=inward
https://hdl.handle.net/11511/101389
DOI
https://doi.org/10.1109/mlsp55214.2022.9943484
Conference Name
32nd IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2022
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Estimation of partially observed multiple graph signals by learning spectrally concentrated graph kernels
Turhan, Gülce; Vural, Elif; Department of Electrical and Electronics Engineering (2021-3-31)
Graph models provide flexible tools for the representation and analysis of signals defined over domains such as social or sensor networks. However, in real applications data observations are often not available over the whole graph, due to practical problems such as broken sensors, connection loss, or storage problems. In this thesis, we study the problem of estimating partially observed graph signals on multiple graphs. We consider possibly multiple graph domains over which a set of signals is available wi...
ESTIMATION OF TIME VARYING GRAPH SIGNALS WITH GRAPH ARMA PROCESSES
Güneyi, Eylem Tuğçe; Vural, Elif; Department of Electrical and Electronics Engineering (2021-9-8)
Graph models provide efficient tools for analyzing data defined over irregular domains such as social networks, sensor networks, and transportation networks. Real-world graph signals are usually time-varying signals. The characterization of the joint behavior of time-varying graph signals in the time and the vertex domains has recently arisen as an interesting research problem, contrasted to the independent processing of graph signals acquired at different time instants. The concept of wide sense stationari...
Learning Parametric Time-Vertex Graph Processes from Incomplete Realizations
Guneyi, Eylem Tugce; Canbolat, Abdullah; Vural, Elif (2021-01-01)
© 2021 IEEE.We consider the problem of estimating time-varying graph signals with missing observations, which is of interest in many applications involving data acquisition on irregular topologies. We model time-varying graph signals as jointly stationary time-vertex ARMA graph processes. We formulate the learning of ARMA process parameters as an optimization problem where the joint power spectral density of the model is fit to a rough empirical estimate of the process covariance matrix. We propose a convex...
Estimation of Time-Varying Graph Signals by Learning Graph Dictionaries Zamanda Deǧişen Graf Sinyallerinin Kestirimi için Graflarda Sözlük Öǧrenme
Acar, Abdullah Burak; Vural, Elif (2022-01-01)
We study the problem of estimating time-varying graph signals from missing observations. We propose a method based on learning graph dictionaries specified by a set of time-vertex kernels in the joint spectral domain. The parameters of the time-vertex kernels are optimized jointly with the sparse representation coefficients of the signals, so that the learnt representation fits well to the available observations of the time-vertex signals at hand. The missing observations of the signals are then estimated b...
Synthesis of past time signal temporal logic formulas using monotonicity properties
Ergürtuna, Mert.; Aydın Göl, Ebru; Department of Computer Engineering (2020)
Due to its expressivity and efficient algorithms, Signal Temporal Logic (STL) is widely used in runtime verification, formal control and analysis of time series data. While it is relatively easy to define an STL formula, simulate the system and mark the unexpected behaviors according to the formula as in the testing process, finding an STL formula that would detect the underlying cause of the errors is a complicated process. The main motivation of this thesis is to find a method that would explain the event...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Canbolat and E. Vural, “Estimation of Locally Stationary Graph Processes from Incomplete Realizations,” Xian, Çin, 2022, vol. 2022-August, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85142769073&origin=inward.