Operational Optimization of an Agricultural Microgrid

Brown, Paul D.
Göl, Murat
© 2022 IEEE.A demonstration agricultural microgrid containing solar photovoltaic (PV), battery storage system (BSS) and multiple water pumps and reservoirs is presented. A mathematical model of the cost of operating the demonstration microgrid is developed. The mathematical model includes hybrid inverter source switching and BSS charging modes in addition to power balance and inter-period energy and water-level coupling. Electricity pricing and irrigation water use efficiency are allowed to vary by time of day. The mathematical model is formulated as a mixed-integer linear program (MILP), implemented in Python using Pyomo, and optimized using the open-source SCIP solver to plan pumping and water usage. Estimated data for a demonstration system at a farm in Turkey is used to demonstrate the proposed model. Results of the optimization of the demonstration system show intuitive results that are superior to a rule-based initialization. The model may serve as the basis for model predictive control (MPC) or stochastic model predictive control (SMPC).
57th International Universities Power Engineering Conference: Big Data and Smart Grids, UPEC 2022


Adaptation of Renewable Based Power Plants to the Energy Market Using Battery Energy Storage Systems
Durna, E.; Parlak, D.; Logoglu, E. Uz; Gercek, C. O. (2014-10-22)
This paper presents a method for the adaptation of a wind power plant to the energy market using battery energy storage systems (BESS) to show the feasibility of using fast-response batteries, and to calculate its payback period. The proposed method is also used to investigate the optimum battery size according to the installed capacity of the wind farm based on the price and wind forecast, and arbitrage opportunity so as to maximize the profit of the investor. The profit obtained from the market by the bat...
Optimal sizing of stand-alone photovoltaic systems in residential buildings
Okoye, Chiemeka Onyeka; Solyali, Oguz (2017-05-01)
Solar photovoltaic (PV) system is one of the matured solar-to-electricity conversion technologies with a great potential for residential applications. For wider adoption of PV systems, there is a need for an accurate sizing and economic assessment tool to inform decision makers. In this study, we propose a new optimization model based on integer programming for the adoption of stand-alone PV systems in the residential sector. The proposed model not only determines the optimal number of PV modules and batter...
Optimizing the orientation of solar photovoltaic systems considering the effects of irradiation and cell temperature models with dust accumulation
Al-Ghussain, Loiy; Taylan, Onur; Abujubbeh, Mohammad; Hassan, Muhammed A. (2023-01-01)
© 2022To cope with the growing installation capacities of solar photovoltaic (PV) systems in desert areas, it is necessary to revisit the energy production models and the optimal angles of PV panels given the significant impacts of ambient temperature, wind speed, dust accumulation, and cleaning frequency. In this study, these four factors are examined for four PV technologies (polycrystalline, microcrystalline, monocrystalline, and thin-film) at three cities in Jordan, Egypt, and Tunisia using precise grou...
Design of a Centralized Microgrid Controller in Compliance with IEEE 2030.7 Standard
Pouraltafi-Kheljan, Soheil; Göl, Murat; Department of Electrical and Electronics Engineering (2021-9-10)
With the incorporation of renewable distributed energy resources and electric vehicles and battery storage systems into the conventional grid structure, the need for a microgrid and its control is emerging. IEEE 2030.7 Standard defines the Microgrid control system as a key element of microgrid regulating every aspect of it at the point-of-interconnection (POI) with the distribution system and autonomously manages operations such as transitions of operating modes. This system consists of control functions, w...
Numerical investigation of a stand alone solar hydrogen energy system effects of PEFC degradation
Ender, Ozden; Tarı, İlker (null; 2015-08-12)
An existing stand-alone solar energy system producing hydrogen for energy storage is numerically investigated focusing on the degradation of Polymer Electrolyte Fuel Cell (PEFC) and its effects on the overall performance of the system. The system consists of Photovoltaic (PV) panels, polymer electrolyte based electrolyzers, H2 and O2 storage tanks and a commercial PEFC stack. A PEFC is numerically investigated both as new and as degraded (for about two years). Using a variety of observed degradation pattern...
Citation Formats
P. D. Brown and M. Göl, “Operational Optimization of an Agricultural Microgrid,” presented at the 57th International Universities Power Engineering Conference: Big Data and Smart Grids, UPEC 2022, İstanbul, Türkiye, 2022, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85141498801&origin=inward.