Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Impact of local site effects on seismic risk assessment of reinforced concrete bridges
Date
2023-01-01
Author
Ozsarac, Volkan
Ricardo, Monteiro
Askan Gündoğan, Ayşegül
Calvi, Gian Michele
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
99
views
0
downloads
Cite This
In most practical applications of performance-based earthquake engineering, the local site characteristics are considered simplistically, and soil-structure interaction effects are ignored. Within such a conventional approach, the ground motion record selection uses the time-averaged shear-wave velocity in the top 30 m of the soil profile (VS30) as the main proxy to represent the site where the structure is located. This study aims to assess the impact of local site effects on the risk assessment of reinforced concrete (RC) bridges by incorporating the local-site response and soil-structure interaction effects more realistically within a more detailed approach. For this pur-pose, seismic risk assessment of RC bridge structures with various configurations located on varying site char-acteristics was carried out using different levels of refinement in the numerical modelling. Local site amplification was incorporated using site response analysis, and p-y models were used to consider foundation flexibility. Cloud analyses were then carried out on both modelling approaches to obtain and compare the corresponding scenario-based seismic loss estimates for the structures. Moreover, the results of numerical ana-lyses were scrutinized in terms of peak demand to capacity ratio values, and statistical hypothesis testing was used to quantify the similarity between the two approaches further. In some cases of site response modeling, especially when the fundamental periods of the bridge structure and site are sufficiently close, higher displacement demands on bridge piers were obtained, likely leading to higher direct seismic losses.
Subject Keywords
Site -response analysis
,
Soil -structure interaction
,
Reinforced concrete bridges
,
Seismic risk assessment
,
Performance -based earthquake engineering
,
SOIL-STRUCTURE INTERACTION
,
DESIGN
,
MODEL
,
SOFTWARE
URI
https://hdl.handle.net/11511/101526
Journal
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
DOI
https://doi.org/10.1016/j.soildyn.2022.107624
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Fundamental Concepts of Performance Based Earthquake Engineering
Sucuoğlu, Haluk (null; 2015-08-29)
In modern earthquake engineering, seismic performance properties are more important than the resistance properties of structures. Seismic performance of a structure is related to the expected damage level under an earthquake excitation, and how this damage relates to safety and use of the building. Accordingly, estimation of member deformations becomes more critical than the estimation of internal forces since the deformations in the post elastic regions of the structure are well correlated with damage in t...
Effect of fiber type and concrete strength on the energy absorption capacity of fiber reinforced concrete plates under quasi-static bending
Mercan, Ali Macit; Yaman, İsmail Özgür; Department of Civil Engineering (2019)
With all the known solid advantages of concrete, it has also limitations in its mechanical properties, such as low ductility, tensile strength and energy absorption capacity/toughness. In order to eliminate or minimize these limitations, some developments have been worked up by introducing natural or artificial fibers into the concrete mixture. The main scope of this thesis is to observe the effect of different fiber types and dosages on the performance of two different concrete grades. Two steel fibers wit...
An efficient seismic intensity measure for seismic risk analysis of structures
Çelik, Ozan Cem (null; 2010-12-01)
In a seismic fragility or seismic margins assessment, the estimated structural system response is conditioned on a measure of seismic intensity. The U.S. Geological Survey currently stipulates the site-dependent seismic hazard by mapping the spectral acceleration at a frequency of 2% probability of being exceeded in 50 years. The scatter in structural responses at a given intensity measure (IM) due to record-to-record variability in ground motion ensembles used in nonlinear time history analysis of structur...
Influence of the shear wall area to floor area ratio on the seismic performance of existing reinforced concrete buildings
Günel, Ahmet Orhun; Burak Bakır, Burcu; Department of Civil Engineering (2013)
An analytical study is performed to evaluate the influence of shear wall area to floor area ratio on the behavior of existing mid-rise reinforced concrete buildings under earthquake loading. The seismic performance of five existing school buildings with shear wall ratios between 0.00% and 2.50% in both longitudinal and transverse directions and their strengthened counterparts are evaluated. Based on the structural properties of the existing buildings, additional buildings with varying shear wall ratios are ...
Effect of the high frequency components of near-fault ground motions on the response of linear and nonlinear SDOF systems: A moving average filtering approach
Yalcin, O. Fatih; Dicleli, Murat (Elsevier BV, 2020-02-01)
In this study, the effect of the high frequency components of near fault ground motions (NFGM) with forward rupture directivity effect (FRDE) on the seismic response of elastic and inelastic SDOF regular (non-isolated) and seismic isolated structures is studied. For this purpose, Moving Average filtering method is used to remove the high frequency content of the NFGM at various filtering levels. The key motive for this effort is to evaluate the appropriateness of representing the NFGMs by decomposed signals...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
V. Ozsarac, M. Ricardo, A. Askan Gündoğan, and G. M. Calvi, “Impact of local site effects on seismic risk assessment of reinforced concrete bridges,”
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
, vol. 164, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/101526.