Influence of the shear wall area to floor area ratio on the seismic performance of existing reinforced concrete buildings

Günel, Ahmet Orhun
An analytical study is performed to evaluate the influence of shear wall area to floor area ratio on the behavior of existing mid-rise reinforced concrete buildings under earthquake loading. The seismic performance of five existing school buildings with shear wall ratios between 0.00% and 2.50% in both longitudinal and transverse directions and their strengthened counterparts are evaluated. Based on the structural properties of the existing buildings, additional buildings with varying shear wall ratios are designed. Consequently, twenty four buildings with different floor plans, number of stories, cross-sectional properties of the members and material strengths are acquired. Nonlinear time-history analyses are performed for all buildings by utilizing the software program, SAP2000 v14.2.0. under seven different ground motion records. The results indicated that roof drifts and plastic deformations reduce with increasing shear wall ratios, but the rate of decrease is lower for higher shear wall ratios. Buildings with 1.00% shear wall ratio have significantly lower roof drifts and plastic deformations when compared to buildings with 0.00% or 0.50% shear wall ratio. Roof drifts and plastic deformations are minimized when the shear wall ratio is increased to 1.50%. After this limit, addition of shear walls has only a slight effect on the seismic performance of the analyzed buildings.


Seismic upgrading of reinforced concrete frames with structural steel elements
Özçelik, Ramazan; Binici, Barış; Department of Civil Engineering (2011)
This thesis examines the seismic internal retrofitting of existing deficient reinforced concrete (RC) structures by using structural steel members. Both experimental and numerical studies were performed. The strengthening methods utilized with the scope of this work are chevron braces, internal steel frames (ISFs), X-braces and column with shear plate. For this purpose, thirteen strengthened and two as built reference one bay one story portal frame specimens having 1/3 scales were tested under constant grav...
Explicit nonlinear analysis for quasi-static behavior of frame structures with pid control and mass scaling
Kocamaz, Korhan; Tuncay, Kağan; Department of Civil Engineering (2018)
Performance-based seismic design of reinforced concrete frame systems requires time history analysis of the structural model under earthquake loads and estimation of damage in the members. Time history analysis of these structures is usually performed using implicit time integration methods. For the implicit integration methods, divergence of the solution is typically treated as the onset of collapse of modelled system. In this study, a nonlinear analysis platform that enables the analysis of the effect of ...
A comparative structural and architectural analysis of earthquake resistant design principles applied in reinforced concrete residential buildings in Turkey
Özmen, Cengiz; Ünay, Ali İhsan; Department of Building Science in Architecture (2008)
The aim of this thesis is to demonstrate that it is possible to design earthquake resistant residential structures without significant compromises in the spatial quality and economic viability of the building. The specific type of structural system that this thesis focuses on is the reinforced concrete skeleton system. The parametric examples and key studies that are used in this research are chosen among applied projects in the city of Bolu. This city is chosen due to its location on the North Anatolian Fa...
Seismic behavior of autoclaved aerated concrete reinforced vertical panel buildings
Gökmen, Furkan; Binici, Barış; Department of Civil Engineering (2017)
In this study, the seismic behavior of Autoclaved Aerated Concrete (AAC) reinforced panel walls and buildings was investigated. The structural members were investigated under cyclic lateral loading and axial load and the results were compared with the previous tests. The main objective of this study was to provide recommendations for nonlinear analysis of the reinforced AAC panel walls and buildings. OpenSees plat-form was chosen as the computational platform. The walls were modeled with fiber sections. The...
Implementation of coupled thermal and structural analysis methods for reinforced concrete structures
Albostan, Utku; Kurç, Özgür; Department of Civil Engineering (2013)
Temperature gradient causes volume change (elongation/shortening) in concrete structures. If the movement of the structure is restrained, significant stresses may occur on the structure. These stresses may be so significant that they can cause considerable cracking at structural components of large concrete structures. Thus, during the design of a concrete structure, the actual temperature gradient in the structure should be obtained in order to compute the stress distribution on the structure due to therma...
Citation Formats
A. O. Günel, “Influence of the shear wall area to floor area ratio on the seismic performance of existing reinforced concrete buildings,” M.S. - Master of Science, Middle East Technical University, 2013.