Loss of the Nuclear Envelope Protein LAP1B Disrupts the Myogenic Differentiation of Patient-Derived Fibroblasts

2022-11-01
Kayman Kürekçi, Gülsüm
Acar, Aybar Can
Dinçer, Pervin R.
Lamina-associated polypeptide 1 (LAP1) is a ubiquitously expressed inner nuclear membrane protein encoded by TOR1AIP1, and presents as two isoforms in humans, LAP1B and LAP1C. While loss of both isoforms results in a multisystemic progeroid-like syndrome, specific loss of LAP1B causes muscular dystrophy and cardiomyopathy, suggesting that LAP1B has a critical role in striated muscle. To gain more insight into the molecular pathophysiology underlying muscular dystrophy caused by LAP1B, we established a patient-derived fibroblast line that was transdifferentiated into myogenic cells using inducible MyoD expression. Compared to the controls, we observed strongly reduced myogenic differentiation and fusion potentials. Similar defects were observed in the C2C12 murine myoblasts carrying loss-of-function LAP1A/B mutations. Using RNA sequencing, we found that, despite MyoD overexpression and efficient cell cycle exit, transcriptional reprogramming of the LAP1B-deficient cells into the myogenic lineage is impaired with delayed activation of MYOG and muscle-specific genes. Gene set enrichment analyses suggested dysregulations of protein metabolism, extracellular matrix, and chromosome organization. Finally, we found that the LAP1B-deficient cells exhibit nuclear deformations, such as an increased number of micronuclei and altered morphometric parameters. This study uncovers the phenotypic and transcriptomic changes occurring during myoconversion of patient-derived LAP1B-deficient fibroblasts and provides a useful resource to gain insights into the mechanisms implicated in LAP1B-associated nuclear envelopathies.
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES

Suggestions

ALCAM (Activated Leukocyte Cell Adhesion Molecule)
Yavuz, Esra; ÖYKEN, MERVE; Erson Bensan, Ayşe Elif (2018-01-01)
ALCAM (Activated Leukocyte Cell Adhesion Molecule), also known as CD166 (cluster of differentiation 166), is a member of a subfamily of immunoglobulin receptors with five immunoglobulin-like domains (VVC2C2C2) in the extracellular domain.
Unnatural amino acid replacement in a yeast G protein-coupled receptor in its native environment.
Huang, LY; Umanah, G; Hauser, M; Son, Çağdaş Devrim; Arshava, B; Naider, F; Becker, JM (American Chemical Society (ACS), 2008-05-20)
Ste2p is the G protein-coupled receptor (GPCR) for the tridecapeptide pheromone cc factor of Saccharomyces cerevisiae. This receptor- pheromone pair has been used extensively as a paradigm for investigating GPCR structure and function. Expression in yeast harboring a cognate tRNA/aminoacyl-tRNA synthetase pair specifically evolved to incorporate p-benzoyl-L-phenylalanine (Bpa) in response to the amber codon allowed the biosynthesis of Bpa-substituted Ste2p in its native cell. We replaced natural amino acid ...
Molecular cloning, characterization, and expression analysis of a gene encoding a Ran binding protein (RanBP) in Cucumis melo L.
Baloglu, Mehmet Cengiz; Zakharov, Florence Negre; Öktem, Hüseyin Avni; Yücel, Ayşe Meral (2011-01-01)
Ran binding proteins (RanBPs) are highly conserved members of the GTP-binding protein family that are involved in nuclear protein export between the nucleus and the cytoplasm. In this study, a CmRanBP gene from a melon was isolated (Cucumis melo L.) using the RACE (rapid amplification of cDNA ends) method. The 778 basepair long melon, with a RanBP cDNA encoding consisting of 197 amino acids (22.2 kDa protein), was characterized (GenBank accession no: EU853459). The predicted amino acid sequence of CmRanBP w...
Molecular docking study of fda-approved drugs to inhibit the bacterial ribosome
Ateş, Beril; Yüce, Merve; Levitaş, Ozge Kurkcuoglu; Sungur, Fethiye Aylin (Orta Doğu Teknik Üniversitesi Enformatik Enstitüsü; 2022-10)
Ribosomes are large macromolecular complexes responsible for cellular protein synthesis. It consists of two subunits; called 30S small and 50S large subunits in bacteria, involving antibiotic binding regions. This mac- romolecular machine is one of the significant targets of conventional antibiotics because protein synthesis can be stopped by targeting functional sites in the ribosome. For instance, several antibiotics target the decoding center responsible for deciphering the genetic code, as well as mRNA ...
Recombinant transglutaminase production by metabolically engineered Pichia pastoris
Gündüz, Burcu; Çalık, Pınar; Yılmaz, Remziye; Department of Biotechnology (2012)
Transglutaminases (EC 2.3.2.13) are enzymes that catalyze an acyl transfer reaction between a γ-carboxyamide group of a peptide bound glutaminyl residue (acyl donor) and a variety of primary amines (acyl acceptors), including the amino group lysine. Transglutaminase has a potential in obtaining proteins with novel properties, improving nutritional quality of foods with the addition of essential amino acids, preparing heat stable gels, developing rheological properties and mechanical strength of foods and re...
Citation Formats
G. Kayman Kürekçi, A. C. Acar, and P. R. Dinçer, “Loss of the Nuclear Envelope Protein LAP1B Disrupts the Myogenic Differentiation of Patient-Derived Fibroblasts,” INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 23, no. 21, pp. 0–0, 2022, Accessed: 00, 2023. [Online]. Available: https://www.mdpi.com/1422-0067/23/21/13615/pdf.