Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design and Optimization of Nano-Optical Isolators Based on Irregular Arrangements of Dielectric Rods
Date
2022-01-01
Author
Yazar, Şirin
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
107
views
0
downloads
Cite This
Design and optimization of efficient and compact nano-optical isolators based on irregular arrays of dielectric rods are presented. These designs allow electromagnetic waves to propagate in single direction and prevent them from propagating in the opposite direction. This way, high forward transmission is achieved, while the main source is protected from reflected waves. Effective optimization algorithms are integrated with the multilevel fast multipole algorithm (MLFMA), a fast and accurate full-wave numerical solver, to design efficient isolators composed of different arrangements of dielectric elements with controlled forward and backward transmissions.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85139748808&origin=inward
https://hdl.handle.net/11511/101583
DOI
https://doi.org/10.1109/ap-s/usnc-ursi47032.2022.9886660
Conference Name
2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Design and optimization of nanooptical couplers based on photonic crystals involving dielectric rods of varying lengths
Yazar, Şirin; Ergül, Özgür Salih (2022-1-01)
This study presents design and optimization of compact and efficient nanooptical couplers involving photonic crystals. Nanooptical couplers that have single and double input ports are designed to obtain efficient transmission of electromagnetic waves in desired directions. In addition, these nanooptical couplers are cascaded by adding one after another to realize electromagnetic transmission systems. In the design and optimization of all these nanooptical couplers, the multilevel fast multipole algorithm, w...
Design and evaluation of V-shaped arrays for 2-D DOA estimation
Filik, Tansu; Tuncer, Temel Engin (2008-04-04)
A new method for optimum design of V-shaped arrays is presented for azimuth and elevation angle estimation simultaneously. The design criterion is based on the Cramer-Rao Bound (CRB) for joint estimation where the coupling effect between the azimuth and elevation direction of arrival (DOA) angles is taken into account. The design method finds an optimum angle between the linear sub-arrays of the V-array. The computation of the optimum angle is simple due to the monotonic characteristics of the best and wors...
Design of Compact Nano-Optical Couplers Involving Dielectric Nanorods
Karaosmanoglu, Bariscan; Yazar, Sirin; Ergül, Özgür Salih (2018-06-01)
We present optimization and design of nano-optical couplers involving dielectric nanorods. Using tens of elements, optimal array configurations are found to produce alternative responses that can be digitized. For realistic simulations, the couplers are modeled as three-dimensional structures and analyzed via surface integral equations and the multilevel fast multipole algorithm (MLFMA). Initial results are presented demonstrate the feasibility of compact but effective couplers with desired responses.
Design, optimization, and analyses of nano-optical couplers consisting of nanocubes to construct efficient nanowire transmission systems
Altınoklu, Aşkın; Ergül, Özgür Salih (2021-01-01)
We present the design, optimization, and analyses of efficient couplers to construct nano-optical transmission systems involving nanowires. The couplers consist of optimized arrangements of nanocubes and are integrated into critical locations, such as nanowire inputs, corners, and junctions, to improve electromagnetic transmission in accordance with design purposes. Optimization and numerical analyses are performed by employing an efficient simulation environment based on a full-wave solver and genetic algo...
Design of pattern reconfigurable antennas by using characteristic mode theory
Aydın, Tolunay; Alatan, Lale; Department of Electrical and Electronics Engineering (2020-10-22)
Pattern reconfigurable antennas improve the performance of the system in applications which have dynamic radiation pattern requirements like multi- input multi-output arrays, phased arrays and body area networks. Characteristic mode theory was shown to be useful when investigating the possible orthogonal radiation patterns on an antenna element. Due to improvements in computation capacity of the modern computers, characteristic mode analysis can be used efficiently during the design of pattern reconfigurabl...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ş. Yazar and Ö. S. Ergül, “Design and Optimization of Nano-Optical Isolators Based on Irregular Arrangements of Dielectric Rods,” presented at the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022, Colorado, Amerika Birleşik Devletleri, 2022, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85139748808&origin=inward.