Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An Assessment on the Efficiency of Different Reduction Techniques Based on Substructuring for Bladed Disk Systems with Shrouds
Date
2023-01-01
Author
Naghizadeh, Ehsan
Ciğeroğlu, Ender
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
530
views
0
downloads
Cite This
Vibration analysis of shrouded bladed disk systems often becomes expensive due to friction nonlinearities and randomness stemming from mistuning phenomena. This implies a great demand for a highly efficient model order reduction technique to not only reduce the computational effort but, more importantly, provide reliable displacement predictions on certain degrees of freedom (shrouds). The latter becomes more critical in bladed disks with shroud contacts, since the promising results from contact models are limited by the accuracy of displacements predicted by reduced-order models for shroud degrees of freedom. In this study, some notable reduction of order methodologies based on substructuring, namely, fixed interface (Craig-Bampton), free interface (Rubin), and dual Craig-Bampton, and the mixed interface method, which is a combination of free and fixed interface methods, are investigated. The center of attention in this work is the modal contributions of components to the final result and the influence of modal characteristics of substructures on the efficiency of a particular reduction technique. To this end, the methods are examined by a different number of retained modes. The effect of adding up more vibration modes to the reduction basis on the accuracy and computational cost for each reduction technique is compared for predefined error tolerance. It is concluded that the physical characteristics of the blade and disk components significantly affect the forced response of the bladed disk system. Consequently, it can be capitalized on to find a more effective reduction technique for the specific geometry of shrouded blisks to address high computational cost and accurate forced response required in specific areas.
Subject Keywords
Reduction of order techniques
,
Substructuring
,
Bladed disk systems
,
Free and fixed interface methods
,
VIBRATIONS
URI
https://hdl.handle.net/11511/101638
DOI
https://doi.org/10.1007/978-3-031-04094-8_6
Conference Name
40th Conference and Exposition on Structural Dynamics (IMAC)
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
A comparative study for synthesis methods of nano-structured (9Ni-2Mg-Y) alloy catalysts and effect of the produced alloy on hydrogen desorption properties of MgH2
Pourabdoli, Mehdi; Raygan, Shahram; Abdizadeh, Hossein; Üner, Deniz (Elsevier BV, 2013-12-13)
9Ni-2Mg-Y alloy powders were prepared by arc melting, induction melting, mechanical alloying, solid state reaction and subsequent ball milling processes. The results showed that melting processes are not suitable for preparation of 9Ni-2Mg-Y alloy due to high losses of Mg and Y. Therefore, 9Ni-2Mg-Y alloy powder was prepared by three methods including: 1) mechanical alloying, 2) mechanical alloying + solid state reaction + ball milling, and 3) mixing + solid state reaction + ball milling. The prepared 9Ni-2...
A Comparison of Velocity Skin Effect Modeling With 2-D Transient and 3-D Quasi-Transient Finite Element Methods
Tosun, Nail; Ceylan, Doga; Polat, Hakan; Keysan, Ozan (2021-04-01)
The analysis of the velocity skin effect (VSE) in electromagnetic launchers (EMLs) requires a 3-D transient finite element method, unlike magnetic skin and proximity effects. However, VSE is dominant at high speeds, and this creates convergence problems when moving or deformed mesh physics is used in a transient FEM in the 3-D analysis. Commercial finite element software cannot solve the electromagnetic aspects of such a high-speed application with a transient solver in 3-D. Although 2-D approximations can ...
A weak-form spectral Chebyshev technique for nonlinear vibrations of rotating functionally graded beams
Lotfan, Saeed; Dedekoy, Demir; Bediz, Bekir; Ciğeroğlu, Ender (2023-02-01)
This study presents the spectral Chebyshev technique (SCT) for nonlinear vibrations of rotating beams based on a weak formulation. In addition to providing a fast-converging and precise solution for linear vibrations of structures with complex geometry, material, and physics, this method is further advanced to be able to analyze the nonlinear vibration behavior of continuous systems. Rotational motion and material gradation further complicate this nonlinear behavior. Accordingly, the beam is considered to b...
A Mechanistic Model for Predicting Frictional Pressure Losses for Newtonian Fluids in Concentric Annulus
SORGUN, MEHMET; Ozbayoglu, M. E. (Informa UK Limited, 2010-01-01)
A mathematical model is introduced estimating the frictional pressure losses of Newtonian fluids flowing through a concentric annulus. A computer code is developed for the proposed model. Also, extensive experiments with water have been conducted at Middle East Technical University, Petroleum and Natural Gas Engineering Department Flow Loop and recorded pressure drop within the test section for various flow rates. The performance of the proposed model is compared with computational fluid dynamics (CFD) soft...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Naghizadeh and E. Ciğeroğlu, “An Assessment on the Efficiency of Different Reduction Techniques Based on Substructuring for Bladed Disk Systems with Shrouds,” presented at the 40th Conference and Exposition on Structural Dynamics (IMAC), Florida, Amerika Birleşik Devletleri, 2023, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/101638.