Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fault Tolerant Multi-Tx/Multi-Rx Inductive Power Transfer System with a Resonator Coil
Date
2022-01-01
Author
Ayaz, Enes
Altun, Ogün
Polat, Hakan
Keysan, Ozan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
117
views
0
downloads
Cite This
This paper presents a novel multi-transmitter (Tx) / multi-receiver (Rx) inductive power transfer system. Compared to conventional single-Tx/single-Rx systems, multi-Tx/multi-Rx topologies increase reliability and fault tolerance. However, unequal power distribution is challenging in these systems due to coupling differences, which prevents them from operating at rated power or requires over-designed modules. This study proposes the addition of a middle-stage resonator (MSR) that balances power distribution by separating direct couplings between Tx and Rx coils. Thus, it increases reliability and fault tolerance. Direct couplings between Tx and Rx coils are avoided via the proposed coil structure, which also provides rotational symmetry. Moreover, an analytical method is proposed to avoid bifurcation, which reduces switching losses. Then, the fault tolerance analysis on multi-Tx/multi-Rx systems and optimum selection of module numbers are investigated. Finally, a 1kW 2Tx/1MSR/4Rx prototype is established to continue operation under single-Tx, single-Rx, and double-Rx open circuit faults.
Subject Keywords
Bifurcation
,
Circuit faults
,
common DC bus
,
Couplings
,
fault tolerance
,
inductive power transfer
,
modular design
,
Power distribution
,
Q-factor
,
Rectifiers
,
reliability
,
resonator coil
,
Vehicle dynamics
,
Wireless power transfer
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85139386351&origin=inward
https://hdl.handle.net/11511/101655
Journal
IEEE Journal of Emerging and Selected Topics in Power Electronics
DOI
https://doi.org/10.1109/jestpe.2022.3208423
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Concurrent operation of wireless power transfer based contactless slip ring and motor drive system with a single converter
Ayaz, Enes; Keysan, Ozan; Department of Electrical and Electronics Engineering (2022-9)
This thesis presents a novel approach for concurrent power transfer to wired and wireless systems using a single inverter. This proposed approach fits a cost-effective solution to wireless power transfer (WPT) systems used in contactless slip rings (CSR) applications such as sensors, radars, or wind-turbine pitch controls. In conventional systems, there are two separate converters: one is for the motor drive, and the other is for the WPT system. It is proposed that the switching harmonics of the motor drive...
Carrier Phase Shift Method of SPWM for Concurrent Wired and Wireless Power Transfer Systems
Ayaz, Enes; Altun, Ogün; Keysan, Ozan (2022-01-01)
This paper presents an approach for concurrent power transfer to wired and wireless systems using just a single inverter. The approach utilizes a novel carrier phase-shift (CPS) method that independently controls the inverter output voltages at the fundamental and switching frequencies. This proposed method can be a cost-effective solution to wireless power transfer (WPT) systems used in contactless slip rings (CSR), which transfer power to auxiliary loads such as sensors, radars, and IoT devices. There are...
Fully Integrated Ultra-Low Voltage DC-DC Converter with Voltage Quadrupling LC Tank Oscillator for Energy Harvesting Applications
Jayaweera, H. M. P. C.; Tabrizi, Hamed Osouli; Muhtaroglu, Ali (2017-12-02)
This paper presents a novel fully integrated ultra-low voltage DC-DC converter and its multi-stage architecture. DC-DC converter frequency has been analytically derived using model analysis and validated in Cadence environment. The proposed voltage quadrupling LC tank oscillator eliminates the buffer circuits utilized in the traditional DC-DC converter, hence improves the performance metrics such as efficiency and output power capacity. The circuit was designed in 180nm standard CMOS process and was simulat...
Highly Integrated 3 V Supply Electronics for Electromagnetic Energy Harvesters With Minimum 0.4 V-peak Input
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2017-07-01)
This paper presents a self-powered interface enabling battery-like operation with a regulated 3 V output from ac signals as low as 0.4 V-peak, generated by electromagnetic energy harvesters under low frequency vibrations. As the first stage of the 180 nm standard CMOS circuit, harvested signal is rectified through an ac/dc doubler with active diodes powered internally by a passive ac/dc quadrupler. The voltage is boosted in the second stage through a low voltage charge pump stimulated by an on-chip ring osc...
DC Link Capacitor Optimization for Integrated Modular Motor Drives
Ugur, Mesut; Keysan, Ozan (2017-06-21)
In this paper, selection of optimum DC link capacitor for Integrated Modular Motor Drives (IMMD) is presented. First, a review of IMMD technologies is given and current research and future prospects are studied. Inverter topologies and gate drive techniques are evaluated in terms of DC link performance. The urge for volume reduction in IMMD poses a challenge for the selection of optimum DC link capacitor. DC Link capacitor types are discussed and critical aspects in selecting the DC links capacitor are list...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Ayaz, O. Altun, H. Polat, and O. Keysan, “Fault Tolerant Multi-Tx/Multi-Rx Inductive Power Transfer System with a Resonator Coil,”
IEEE Journal of Emerging and Selected Topics in Power Electronics
, pp. 0–0, 2022, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85139386351&origin=inward.