Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Performance of polylactide biopolymer as matrix material for woven fiber composite laminates
Date
2022-01-01
Author
Demirok, Gokberk
Kaynak, Cevdet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
124
views
0
downloads
Cite This
The first purpose of this study was, as the first time in the literature, to investigate usability of polylactide (PLA) biopolymer as the matrix of high-performance composite laminated structures having woven forms of glass and carbon fibers. For this purpose, 2-14 layers of 2 × 2 twill Carbon Fiber (CF) and 1 × 1 plain weave Glass Fiber (GF) forms were stacked by PLA powders followed by consolidation of these layers by compression molding technique. After conducting various tests and analysis it was observed that significant improvements in the mechanical and thermal properties could be obtained by laminating PLA with woven CF and GF layers. For instance, mechanical properties obtained for PLA/CF laminates with 14 layers were flexural strength of 641 MPa, flexural modulus of 34 GPa and interlaminar shear strength of 38 MPa. Another purpose of this study was to compare mechanical performance of the PLA matrix laminates with Epoxy matrix laminates having exactly the same type and number of GF and CF layers. It was revealed that mechanical properties of the PLA/CF laminates were approaching to the values of the Epoxy/CF laminates (e.g. flexural strength of 607 and 673 MPa, respectively); while due to poor adhesion between the PLA matrix and Glass Fiber surfaces, the properties were lower in the PLA/GF laminates (e.g. flexural strength of 302 and 553 MPa, respectively). Therefore, it could be generally concluded that, in terms of mechanical performance; traditional thermoset Epoxy matrix could be replaced with the renewable biopolymer PLA matrix in the Woven Carbon Fiber laminates. For the Woven Glass Fiber laminates, a proper sizing treatment with a PLA compatible silane coupling agent would be necessary.
Subject Keywords
Polylactide
,
biopolymer
,
woven carbon fibers
,
woven glass fibers
,
composite laminates
,
MECHANICAL-PROPERTIES
,
TENSILE-STRENGTH
,
ACID PLA
,
CARBON
,
BEHAVIOR
,
BIOCOMPOSITES
,
PARAMETERS
,
RTM
,
biopolymer
,
composite laminates
,
Polylactide
,
woven carbon fibers
,
woven glass fibers
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85135632539&origin=inward
https://hdl.handle.net/11511/101754
Journal
Journal of Thermoplastic Composite Materials
DOI
https://doi.org/10.1177/08927057221118011
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Usability of polylactide biopolymer as thermoplastic matrix for woven fiber composite laminates
Demirok, Gökberk; Kaynak, Cevdet; Department of Metallurgical and Materials Engineering (2022-4-28)
The first purpose of this study was, as the first time in the literature, to investigate usability of polylactide (PLA) biopolymer as the matrix of high-performance composite laminated structures having woven forms of glass and carbon fibers. For this purpose, 2-14 layers of 2x2 twill Carbon Fiber (CF) and 1x1 plain weave Glass Fiber (GF) forms were stacked by PLA powders followed by consolidation of these layers by compression molding technique. After conducting various tests and analysis it was observed t...
Experimental investigation of the effect of CNT addition on the strength of CFRP curved composite beams
Arca, M.A.; Uyar, I.; Çöker, Demirkan (2015-01-01)
Carbon nanotubes (CNT) have been attracting attention as a toughening material in composite matrix due to their excellent mechanical properties. However, superior properties of CNTs have not yet been realized in the strengthening of composites against fracture. This study focuses on investigating the effect of CNT variation in the epoxy resin on the strength of curved composite beams. Specimens are [0/90] fabric carbon/epoxy composite laminates manufactured by hand layup technique 3 % wt CNT fractions in th...
Improvement of fracture resistance in a glass matrix optomechanical composite reinforced by Al2O3-ZrO2 minicomposite
Dericioğlu, Arcan Fehmi; Kagawa, Y. (null; 2002-12-31)
The possibility of obtaining fracture resistant optically transparent ceramic matrix optomechanical composites was studied on a continuous Al2O3-ZrO2 minicomposite-reinforced glass matrix model composite. A mesh-like reinforcement structure composed of unidirectional minicomposites was determined to be effective in improving the fracture resistance of the brittle matrix with a small expense in its optical transparency. With decreasing minicomposite to minicomposite spacing, the fracture resistance of the op...
Vibration damping behavior of epoxy matrix composites reinforced with carbon fibers and carbon nanotubes
Avil, Esma; Kaynak, Cevdet; Department of Metallurgical and Materials Engineering (2019)
The main objective of this study was to investigate contribution of the nonfunctionalized multi-walled carbon nanotubes (CNT) on the vibration damping behavior of first neat epoxy resin and then unidirectional and bidirectional continuous carbon fiber (CF) reinforced epoxy matrix composites. Epoxy/CNT nano-composites were produced by ultrasonic solution mixing method, while the continuous CF reinforced composite laminates were obtained via resin-infusion technique. Vibration analysis data of the specimens w...
Use of split-disk tests for the process parameters of filament wound epoxy composite tubes
Kaynak, Cevdet; PARNAS, LEVENT; ŞENEL, FİKRET (2005-08-01)
The aim of this study was to investigate processing parameters of continuous fiber reinforced epoxy composite tubes produced by the filament winding technique. For this purpose, split-disk tests (according to ASTM D-2290 standard) were performed for the specimens produced with two different epoxy resin systems, five different fiber materials and five different winding angles. By determining the hoop tensile strength and modulus of these specimens, the effects of three filament-winding processing parameters;...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Demirok and C. Kaynak, “Performance of polylactide biopolymer as matrix material for woven fiber composite laminates,”
Journal of Thermoplastic Composite Materials
, pp. 0–0, 2022, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85135632539&origin=inward.