Vibration damping behavior of epoxy matrix composites reinforced with carbon fibers and carbon nanotubes

Download
2019
Avil, Esma
The main objective of this study was to investigate contribution of the nonfunctionalized multi-walled carbon nanotubes (CNT) on the vibration damping behavior of first neat epoxy resin and then unidirectional and bidirectional continuous carbon fiber (CF) reinforced epoxy matrix composites. Epoxy/CNT nano-composites were produced by ultrasonic solution mixing method, while the continuous CF reinforced composite laminates were obtained via resin-infusion technique. Vibration analysis data of the specimens were evaluated by half-power bandwidth method, while the mechanical properties of the specimens were determined with three-point bending flexural tests, including morphological analyses under scanning electron microscopy. It was generally concluded that when even only 0.1 wt% CNT were incorporated into neat epoxy resin, they have contributed not only to the mechanical properties (Flexural Strength and Modulus), but also to the vibration behavior (Damping Ratio) of the epoxy. When 0.1 or 0.5 wt% CNT were incorporated into continuous CF reinforced epoxy matrix composites, their contribution in terms of Damping Ratio of the composites were significant

Suggestions

Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils
Dogru, Itir Bakis; Durukan, Mete Batuhan; Turel, Onur; Ünalan, Hüsnü Emrah (2016-06-01)
In this work, vertically aligned carbon nanotubes (VACNTs) grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD) method. Solution based ultrasonic spray pyrolysis (USP) method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor...
Mechanical, electrical and thermal properties of carbon fiber reinforced poly(dimethylsiloxane)/polypyrrole composites
Cakmak, G; Kucukyavuz, Z; Kucukyavuz, S; Cakmak, H (2004-01-01)
Conductive and flexible carbon fiber (CF) reinforced polydimethylsiloxane (PDMS)/polypyrrole (PPy) composites were synthesized electrochemically. Electrochemical synthesis was performed at + 1.1 V using p-toluenesulfonic acid as supporting electrolyte and water as solvent. Composites were characterized by thermal gravimetric analysis, scanning electron microscopy (SEM), conductivity measurements and mechanical tests. Conductivities of composites were observed in the range of 2.2-4 S/cm. SEM studies show tha...
Contribution of carbon nanotubes to vibration damping behavior of epoxy and its carbon fiber composites
Avil, Esma; Kadioglu, Ferhat; Kaynak, Cevdet (SAGE Publications, 2020-04-01)
The main objective of this study was to investigate contribution of the non-functionalized multi-walled carbon nanotubes on the vibration damping behavior of first neat epoxy resin and then unidirectional and bidirectional continuous carbon fiber reinforced epoxy matrix composites. Epoxy/carbon nanotubes nanocomposites were produced by ultrasonic solution mixing method, while the continuous carbon fiber reinforced composite laminates were obtained via resin-infusion technique. Vibration analysis data of the...
Structural Vibration Analysis of Single Walled Carbon Nanotubes with Atom Vacancies
Dogan, Ibrahim Onur; Yazıcıoğlu, Yiğit (2014-11-01)
Recent investigations in nanotechnology show that carbon nanotubes have significant mechanical, electrical and optical properties. Interactions between those are also promising in both research and industrial fields. Those unique characteristics are mainly due to the atomistic structure of carbon nanotubes. In this paper, the structural effects of vacant atoms on single walled carbon nanotubes are investigated using matrix stiffness method. In order to use this technique, a linkage between structural mechan...
Modelling and analyis of multı-walled carbon nanotube reinforced polymer composites
Fatima, Bushra; Esat, Volkan; Sustainable Environment and Energy Systems (2016-8)
In this study, multi-walled carbon nanotubes (MWNTs) and multi walled carbon nanotube reinforced epoxy composites (CNTRPs) are investigated by means of computational modelling. To begin with, individual tubes of MWNTs are modelled with varying chiralities through equivalent continuum modelling in order to examine their essential mechanical properties including Young’s modulus, shear modulus, and Poisson’s ratio. The finite element models developed incorporate beam elements that represent Carbon-Carbon ...
Citation Formats
E. Avil, “Vibration damping behavior of epoxy matrix composites reinforced with carbon fibers and carbon nanotubes,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Metallurgical and Materials Engineering., Middle East Technical University, 2019.