Facile Synthesis and Origin of Enhanced Electrochemical Oxygen Evolution Reaction Performance of 2H-Hexagonal Ba2CoMnO6-delta as a New Member in Double Perovskite Oxides

Perovskite oxides have been considered promising oxygen evolution reaction (OER) electrocatalysts due to their high intrinsic activity. Yet, their poor long-term electrochemical and structural stability is still controversial. In this work, we apply an A -site management strategy to tune the activity and stability of a new hexagonal double perovskite oxide. We synthesized the previously inaccessible 2H-Ba2CoMnO6-delta (BCM) perovskite oxide via the universal sol-gel method followed by a novel air-quench method. The new 2H-BCM perovskite oxide exhibits outstanding OER activity with an overpotential of 288 mV at 10 mA cm-2 and excellent long-term stability without segregation or structural change. To understand the origin of outstanding OER performance of BCM, we substitute divalent Ba with trivalent La at the A-site and investigate crystal and electronic structure change. Fermi level and valence band analysis presents a decline in the work function with the Ba amount, suggesting a structure-oxygen vacancy-work function-activity relationship for BaxLa2-xCoMnO6-delta (x = 0, 0.5, 1, 1.5, 2) electrocatalysts. Our work suggests a novel production strategy to explore the single-phase new structures and develop enhanced OER catalysts.


Fe-catalyzed sulfide oxidation in hydrothermal plumes is a source of reactive oxygen species to the ocean
Shaw, Timothy J.; Luther, George W.; Rosas, Richard; Oldham, Veronique E.; Coffey, Nicole R.; Ferry, John L.; Dias, Dewamunnage M. C.; Yücel, Mustafa; de Chanvalon, Aubin Thibault (2021-10-01)
Historically, the production of reactive oxygen species (ROS) in the ocean has been attributed to photochemical and biochemical reactions. However, hydrothermal vents emit globally significant inventories of reduced Fe and S species that should react rapidly with oxygen in bottom water and serve as a heretofore unmeasured source of ROS. Here, we show that the Fe-catalyzed oxidation of reduced sulfur species in hydrothermal vent plumes in the deep oceans supported the abiotic formation of ROS at concentratio...
Facile synthesis of (4-nitrophenyl)thio-substituted 1- pyrrolines
Korkmaz, Esra; Zora, Metin; Department of Chemistry (2019)
The importance of heterocyclic compounds is enormous in synthetic organic chemistry due to their presence in bioactive molecules. Five-membered 1-pyrrolines are one of the most important classes of them. They have recently drawn great attention from synthetic chemists since they have a prominent role for the synthesis of a great number of pharmaceutical molecules. Therefore, there is intense research on their synthesis. In this project, we concentrated on the synthesis of (4-nitrophenyl)thio-substituted 1- ...
Alkaline manganese electrochemistry studied by in situ and operando spectroscopic methods - metal dissolution, oxide formation and oxygen evolution
Rabe, Martin; Toparlı, Çiğdem; Chen, Ying-Hsuan; Kasian, Olga; Mayrhofer, Karl J. J.; Erbe, Andreas (2019-05-01)
Manganese-based systems are considered as candidate electrocatalysts for the electrochemical oxygen evolution reaction (OER), because of their abundance in biochemical oxygen producing catalyst systems. In this work, the surface of metallic manganese was investigated in situ and operando in potentiodynamic cyclic voltammetry (CV) experiments and potentiostatic chronoamperometry (CA) experiments in NaOH. In both cases, the surfaces were initially reduced. At corresponding potentials, no oxide species can be ...
Kinetic analysis of dual impellers on methane hydrate formation
Longinos, Sotirios Nik; Parlaktuna, Mahmut (2021-02-01)
This study investigates the effects of types of impellers and baffles onmethane hydrate formation. Induction time, water conversion to hydrates (hydrate yield), hydrate formation rate and hydrate productivity are components that were estimated. The initial hydrate formation rate is generally higher with the use of Ruston turbine (RT) with higher values 28.93x10(-8)mol/s inRT/RT with full baffle (FB) experiment, but the decline rate of hydrate formation was also high compared to up-pumping pitched blade turb...
Biological properties of extracellular vesicles and their physiological functions
Yanez-Mo, Maria; et. al. (2015-01-01)
In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance ...
Citation Formats
T. Erdil, E. Lökçü, İ. Yıldız, C. Okuyucu, Y. E. Kalay, and Ç. Toparlı, “Facile Synthesis and Origin of Enhanced Electrochemical Oxygen Evolution Reaction Performance of 2H-Hexagonal Ba2CoMnO6-delta as a New Member in Double Perovskite Oxides,” ACS OMEGA, vol. 7, no. 48, pp. 44147–44155, 2022, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/101768.