Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Neural-network quantum states for a two-leg Bose-Hubbard ladder under magnetic flux
Download
index.pdf
Date
2022-12-01
Author
Çeven, K.
Oktel, M. Ö.
Keleş, Ahmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
117
views
72
downloads
Cite This
Quantum gas systems are ideal analog quantum simulation platforms for tackling some of the most challenging problems in strongly correlated quantum matter. However, they also expose the urgent need for new theoretical frameworks. Simple models in one dimension, well studied with conventional methods, have received considerable recent attention as test cases for new approaches. Ladder models provide the logical next step, where established numerical methods are still reliable, but complications of higher dimensional effects like gauge fields can be introduced. In this paper, we investigate the application of the recently developed neural-network quantum states in the two-leg Bose-Hubbard ladder under strong synthetic magnetic fields. Based on the restricted Boltzmann machine and feedforward neural network, we show that variational neural networks can reliably predict the superfluid-Mott insulator phase diagram in the strong coupling limit comparable with the accuracy of the density-matrix renormalization group. In the weak coupling limit, neural networks also diagnose other many-body phenomena such as the vortex, chiral, and biased-ladder phases. Our work demonstrates that the two-leg Bose-Hubbard model with magnetic flux is an ideal test ground for future developments of neural-network quantum states.
URI
https://hdl.handle.net/11511/101815
Journal
PHYSICAL REVIEW A - ATOMIC, MOLECULAR, AND OPTICAL PHYSICS
DOI
https://doi.org/10.1103/physreva.106.063320
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Quantum Information Approach to Correlations in Many-body Systems
Aksak, Çağan; Turgut, Sadi; Department of Physics (2022-9-21)
Quantum correlations are crucial features in both quantum information theory and many-body physics. Characterization and quantification of quantum correlations have delivered a rich body of work and helped to understand some quantum phenomena. Entanglement is a unique quantum correlation for which it is a resource in many quantum information tasks. Developed for quantification of entanglement, entanglement witness formalism is a remarkable tool in the quantum information toolkit. It can be deployed beyond t...
Quantum system structures of quantum spaces and entanglement breaking maps
Dosi, A. A. (IOP Publishing, 2019-07-01)
This paper is devoted to the classification of quantum systems among the quantum spaces. In the normed case we obtain a complete solution to the problem when an operator space turns out to be an operator system. The min and max quantizations of a local order are described in terms of the min and max envelopes of the related state spaces. Finally, we characterize min-max-completely positive maps between Archimedean order unit spaces and investigate entanglement breaking maps in the general setting of quantum...
Phonon dispersions and elastic constants of disordered Pd-Ni alloys
Kart, SO; Tomak, Mehmet; Cagin, T (Elsevier BV, 2005-01-31)
Phonon frequencies of Pd-Ni alloys are calculated by molecular dynamics (MD) simulation. Lattice dynamical properties computed from Sutton-Chen (SC) and quantum Sutton-Chen (Q-SC) potentials as a function of temperature are compared with each other. We present all interatomic force constants up to the 8th nearest-neighbor shell obtained by using the calculated potential. Elastic constants evaluated by two methods are consistent with each other. The transferability of the potential is also tested. The result...
Thermal rectification behaviour of some small quantum systems
Zervent, Selahittin Atılay; Turgut, Sadi; Department of Physics (2021-9-10)
Thermal rectification behaviors for some small quantum systems are studied by using the Lindblad master equation. From the underlying Hamiltonian dynamics of the composite quantum systems consisting of small quantum systems and reservoirs, Lindblad master equations are obtained by using certain approximations. Optimum operation parameters are determined for a single two-level and two two-level quantum systems. It is shown that there is no thermal rectification behavior when the contact between two reservoir...
Quantum decoherence and quantum state diffusion formalism
Dumlu, Cesim Kadri; Turgut, Sadi; Department of Physics (2007)
Foundational problems of quantum theory, regarding the appearance of classicality and the measurement problem are stated and their link to studies of open quantum systems is discussed. This study's main aim is to analyze the main approaches that are employed in the context of open quantum systems. The general form of Markovian master equations are derived by a constructive approach. The Quantum State Diffusion (QSD) formalism is stressed upon as an alternative method to the master equations. Using the Calde...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Çeven, M. Ö. Oktel, and A. Keleş, “Neural-network quantum states for a two-leg Bose-Hubbard ladder under magnetic flux,”
PHYSICAL REVIEW A - ATOMIC, MOLECULAR, AND OPTICAL PHYSICS
, vol. 106, no. 6, pp. 63320–63320, 2022, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/101815.