Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
SOMATIC COPY NUMBER VARIANT LOAD IN NEURONS OF HEALTHY CONTROLS AND ALZHEIMER’S DISEASE PATIENTS
Download
Somatic_copy_number_variant_load_in_neurons_of_healthy_controls_and_Alzheimer_s_disease_patients (2).pdf
Date
2023-1-9
Author
Turan, Zeliha Gozde
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
144
views
216
downloads
Cite This
The possible role of somatic copy number variations (CNVs) in Alzheimer’s disease (AD) aetiology has been controversial. Although cytogenetic studies suggested increased CNV loads in AD brains, a recent single-cell whole-genome sequencing (scWGS) experiment, studying frontal cortex brain samples, found no such evidence. Here we readdressed this issue using low-coverage scWGS on pyramidal neurons dissected via both laser capture microdissection (LCM) and fluorescence activated cell sorting (FACS) across five brain regions: entorhinal cortex, temporal cortex, hippocampal CA1, hippocampal CA3, and the cerebellum. Among reliably detected somatic CNVs identified in 1301 cells obtained from the brains of 13 AD patients and 7 healthy controls, deletions were more frequent compared to duplications. Interestingly, we observed slightly higher frequencies of CNV events in cells from AD compared to similar numbers of cells from controls (4.1% vs. 1.4%, or 0.9% vs. 0.7%, using different filtering approaches), although the differences were not statistically significant. On the technical aspects, we observed that LCM-isolated cells show higher within-cell read depth variation compared to cells isolated with FACS. To reduce within-cell read depth variation, we proposed a principal component analysis-based denoising approach that significantly improves signal-to-noise ratios. Lastly, we showed that LCM-isolated neurons in AD harbour slightly more read depth variability than neurons of controls, which might be related to the reported hyperploid profiles of some AD-affected neurons.
Subject Keywords
Single-cell whole-genome sequencing, Copy number variation, Alzheimer’s disease, Brain, Laser capture microdissection, Fluorescence-activated cell sorting, Denoising
URI
https://hdl.handle.net/11511/101977
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Somatic copy number variant load in neurons of healthy controls and Alzheimer’s disease patients
Turan, Zeliha Gözde; Richter, Vincent; Bochmann, Jana; Parvizi, Poorya; Yapar, Etka; Işıldak, Ulas; Waterholter, Sarah-Kristin; Leclere-Turbant, Sabrina; Son, Çağdaş Devrim; Duyckaerts, Charles; Yet, İdil; Arendt, Thomas; Somel, Mehmet; Ueberham, Uwe (2022-12-01)
The possible role of somatic copy number variations (CNVs) in Alzheimer’s disease (AD) aetiology has been controversial. Although cytogenetic studies suggested increased CNV loads in AD brains, a recent single-cell whole-genome sequencing (scWGS) experiment, studying frontal cortex brain samples, found no such evidence. Here we readdressed this issue using low-coverage scWGS on pyramidal neurons dissected via both laser capture microdissection (LCM) and fluorescence activated cell sorting (FACS) across five...
Meta analysis of alzheimer’s disease at the gene expression level
İzgi, Hamit; Somel, Mehmet; Department of Biology (2017)
In this study, publicly available microarray gene expression datasets are used to investigate common gene expression changes in different postmortem brain regions in Alzheimer’s Disease (AD) patients compared to control subjects, and to find possible functional associations related to these changes. The hypothesis is that pathogenesis of the disease converges into common patterns of dysregulation/alteration or dysfunction in molecular pathways across different brain regions in AD. In total, I studied 13 dat...
Transcriptomic network analysis of brain aging and alzheimers disease
Parvizi, Poorya; Somel, Mehmet; Tunçbağ, Nurcan; Department of Biology (2017)
Multiple studies have investigated aging brain transcriptomes to identify for age-dependent expression changes and determine genes that may participate in age-related dysfunction. However, aging is a highly complex and heterogeneous process where multiple genes contribute at different levels depending on individuals’ environments and genotypes. Both this biological heterogeneity of aging, as well as technical biases and weaknesses inherent to transcriptome measurements, limit the information gained from a s...
Computer-aided diagnosis of alzheimer’s disease and mild cognitive impairment with MARS/CMARS classification using structural MR images
Çevik, Alper; Eyüboğlu, Behçet Murat; Weber, Gerhard Wilhelm; Department of Biomedical Engineering (2017)
Early detection of Alzheimer’s disease (AD) and its prodromal stage, amnestic mild cognitive impairment (MCI), has drawn remarkable attention in recent years. Despite the impressive developments in fields of image analysis, pattern classification, and machine learning, no computer-aided diagnosis system has yet been a part of the clinical routine to diagnose the AD. This thesis study aims to propose a thorough procedure which involves detecting the early signs of disease-originated deformations by fully-aut...
Gene-level pathogenicity scores for alzheimer’s disease using genomic variants from rna-seq data
Bozkurt, Fatma Betül; İlgün, Atılay; Uzuner, Dilara; Çakır, Tunahan (Orta Doğu Teknik Üniversitesi Enformatik Enstitüsü; 2022-10)
Alzheimer’s disease (AD) is a complex neurodegenerative disorder affecting millions of people worldwide. Next-generation sequencing technologies such as whole-exome/genome sequencing have been widely used for detecting the variants in the genome to understand the disease etiology and unravel underlying molecular mechanisms. Alternatively, RNA-Seq data can also be used to detect variants. Since AD is a complex disease, several variants are involved in the disease pathogenesis. By using scoring algorithms, it...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. G. Turan, “SOMATIC COPY NUMBER VARIANT LOAD IN NEURONS OF HEALTHY CONTROLS AND ALZHEIMER’S DISEASE PATIENTS,” Ph.D. - Doctoral Program, Middle East Technical University, 2023.