Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Computer-aided diagnosis of alzheimer’s disease and mild cognitive impairment with MARS/CMARS classification using structural MR images
Download
index.pdf
Date
2017
Author
Çevik, Alper
Metadata
Show full item record
Item Usage Stats
113
views
29
downloads
Cite This
Early detection of Alzheimer’s disease (AD) and its prodromal stage, amnestic mild cognitive impairment (MCI), has drawn remarkable attention in recent years. Despite the impressive developments in fields of image analysis, pattern classification, and machine learning, no computer-aided diagnosis system has yet been a part of the clinical routine to diagnose the AD. This thesis study aims to propose a thorough procedure which involves detecting the early signs of disease-originated deformations by fully-automated analysis of structural brain magnetic resonance images (MRI). A comprehensive review including the taxonomy of related biomarkers and state-of-the-art techniques is introduced. Proposed methodology involves extraction of voxel intensity-based features (such as tissue probability maps) through segmenation and registration of brain MRI volumes. Voxel-based morphometry framework is employed to provide one-to-one correspondance between the images. Quality of the feature set is evaluated by an analysis including other approaches such as feature-based morphometry. A novel hybrid procedure involving both statistical analysis and utilization of domain knowledge is proposed for feature selection. Performance of the method is compared with these of well-known dimensionality reduction techniques. Multivariate adaptive regression splines (MARS) and Conic MARS (CMARS) were utilized for construction of the class-separating hyperplanes through a parameter optimization procedure involving cross-validation. This study is the first-time engagement of both MARS and CMARS algorithms in field of medical image analysis. Qualitative and quantitative evaluations of classifier performances were presented including a comparison with benchmark studies in the field. Promising results are acquired through the tests performed on Alzheimer’s Disease Neuroimaging Initiative (ADNI) data.
Subject Keywords
Imaging systems in medicine.
,
Alzheimer's disease.
,
Diagnostic imaging.
,
Machine learning.
URI
http://etd.lib.metu.edu.tr/upload/12621555/index.pdf
https://hdl.handle.net/11511/26970
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Meta analysis of alzheimer’s disease at the gene expression level
İzgi, Hamit; Somel, Mehmet; Department of Biology (2017)
In this study, publicly available microarray gene expression datasets are used to investigate common gene expression changes in different postmortem brain regions in Alzheimer’s Disease (AD) patients compared to control subjects, and to find possible functional associations related to these changes. The hypothesis is that pathogenesis of the disease converges into common patterns of dysregulation/alteration or dysfunction in molecular pathways across different brain regions in AD. In total, I studied 13 dat...
Transcriptomic network analysis of brain aging and alzheimers disease
Parvizi, Poorya; Somel, Mehmet; Tunçbağ, Nurcan; Department of Biology (2017)
Multiple studies have investigated aging brain transcriptomes to identify for age-dependent expression changes and determine genes that may participate in age-related dysfunction. However, aging is a highly complex and heterogeneous process where multiple genes contribute at different levels depending on individuals’ environments and genotypes. Both this biological heterogeneity of aging, as well as technical biases and weaknesses inherent to transcriptome measurements, limit the information gained from a s...
Improving the sub-cortical gm segmentation using evolutionary hierarchical region merging
Çiftçioğlu, Mustafa Ulaş; Gökçay, Didem; Department of Medical Informatics (2011)
Segmentation of sub-cortical Gray Matter (GM) structures in magnetic resonance brain images is crucial in clinic and research for many purposes such as early diagnosis of neurological diseases, guidance of surgical operations and longitudinal volumetric studies. Unfortunately, the algorithms that segment the brain into 3 tissues usually suffer from poor performance in the sub-cortical region. In order to increase the detection of sub-cortical GM structures, an evolutionary hierarchical region merging approa...
Somatic copy number variant load in neurons of healthy controls and Alzheimer’s disease patients
Turan, Zeliha Gözde; Richter, Vincent; Bochmann, Jana; Parvizi, Poorya; Yapar, Etka; Işıldak, Ulas; Waterholter, Sarah-Kristin; Leclere-Turbant, Sabrina; Son, Çağdaş Devrim; Duyckaerts, Charles; Yet, İdil; Arendt, Thomas; Somel, Mehmet; Ueberham, Uwe (2022-12-01)
The possible role of somatic copy number variations (CNVs) in Alzheimer’s disease (AD) aetiology has been controversial. Although cytogenetic studies suggested increased CNV loads in AD brains, a recent single-cell whole-genome sequencing (scWGS) experiment, studying frontal cortex brain samples, found no such evidence. Here we readdressed this issue using low-coverage scWGS on pyramidal neurons dissected via both laser capture microdissection (LCM) and fluorescence activated cell sorting (FACS) across five...
Understanding the link between alzheimer’s disease and type 2 diabetesin terms of metabolic alterations
Lüleci, Hatice Büşra; Çakır, Tunahan (Orta Doğu Teknik Üniversitesi Enformatik Enstitüsü; 2022-10)
UNDERSTANDING THE LINK BETWEEN ALZHEIMER’S DISEASE AND TYPE 2 DIABETES IN TERMS OF METABOLIC ALTERATIONS Hatice Büşra Lüleci, Tunahan Çakır Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey ABSTRACT Alzheimer’s disease (AD) is a type of dementia that causes impairment in memory, reasoning, and thinking. Type 2 diabetes (T2D) is common in the general elderly population and is significantly associated with a higher risk of dementia. However, metabolic alterations responsible for this a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Çevik, “Computer-aided diagnosis of alzheimer’s disease and mild cognitive impairment with MARS/CMARS classification using structural MR images,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.