Detection and localization of drones in MIMO CW radar

Download
2023-1
Yazıcı, Ayhan
Low radar cross section and capability to fly at low speeds make drones challenging targets for radar detection. In the presence of ground moving targets, the frequency spectrum is also crowded which makes the detection of the drones more difficult. Micro-Doppler effect is the main feature used to discriminate drone from other targets and clutter. Typically, discrimination is performed after the detection of all the targets. Especially in target dense environments, such as cities, typical approach requires high processing power in order detect and classify all of the targets. Coverage is also another problem of the typical monostatic radar based drone detection in cities. Coverage of monostatic radar is easily blocked by buildings. In order to cope with these problems distributed multi-input multi-output (MIMO) continuous wave (CW) radar using MIMO cyclic spectral density (CSD) analysis (MCSD) method is proposed in this thesis. MCSD method separates drones and other targets and clutter in cyclic frequency domain. In order to make system simple and low cost, a network of continuous wave radars is used and the localization is performed based on Doppler only localization approach. The simulations and experimental results show the proof of the concept. Performance and cost analysis of MCSD method is also analyzed in the thesis.

Suggestions

Jammer cancelation by using space-time adaptive processing
Uysal, Halil; Severcan, Mete; Department of Electrical and Electronics Engineering (2011)
Space-Time Adaptive Processing (STAP) has been widely used in spaceborne and airborne radar platforms in order to track ground moving targets. Jammer is an hostile electronic countermeasure that is being used to degrade radar detection and tracking performance. STAP adapts radar’s antenna radiating pattern in order to reduce jamming effectiveness. Jamming power that enters the system is decreased with respect to the adapted radiation pattern. In this thesis, a generic STAP radar model is developed and imple...
Slow moving target detection for airborne radar systems by dynamic programming on SAR images
Gurer, Gorkem; Koc, Sencer; Candan, Çağatay; Orguner, Umut (2019-04-01)
A dynamic programming based approach is proposed to detect slow moving, low reflectivity targets for airborne radar systems. The suggested method utilizes the reflectivity amplitudes of the SAR image, possibly containing multiple slow moving targets, and poses the target detection problem as a maximum likelihood sequence detection problem. Dynamic programming is applied to capture the target related features such as along track smeared target signatures in the SAR image to this aim. Typical clutter and targ...
Spectral and statistical analyses of experimental radar clutter data
Kahyaoğlu, Nazlı Deniz; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2010)
The performance of radar detection and imaging systems strongly depends on the characteristics of radar clutter. In order to improve the radar signal processing algorithms, successful analysis and modeling of radar clutter are required. For a successful model of radar clutter, both the spectral and statistical characteristics of the clutter should be revealed. Within the scope of this study, an experimental radar data acquisition system is established to analyze radar clutter. The hardware and the data proc...
A Knowledge based approach in GMTI for the estimation of the clutter covariance matrix in space time adaptive processing
Anadol, Erman; Tanık, Yalçın; Department of Electrical and Electronics Engineering (2012)
Ground Moving Target Indication (GMTI) operation relies on clutter suppression techniques for the detection of slow moving ground targets in the presence of strong radar returns from the ground. Space Time Adaptive Processing (STAP) techniques provide a means to achieve this goal by adaptively forming the clutter suppression filter, whose parameters are obtained using an estimated covariance matrix of the clutter data. Therefore, the performance of the GMTI operation is directly a ected by the performance o...
Optimization of vibration characteristics of a radar antenna structure
Baran, İsmet; Özgen, Gökhan Osman; Ciğeroğlu, Ender; Department of Mechanical Engineering (2011)
Radar antenna structures especially array antennas which are integrated onto structures of aerial vehicles are subject to dynamic structural and aerodynamic loads. Due to occurrences of these dynamic loads there will be certain dynamic deformations which affect the antenna’s performance in an adverse manner. The influence of deformations and vibrations are important on array antenna structures, since they cause a change in orientation of elements of the phased array antenna which affects the gain of the ant...
Citation Formats
A. Yazıcı, “Detection and localization of drones in MIMO CW radar,” Ph.D. - Doctoral Program, Middle East Technical University, 2023.