Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling cyanobacterial blooms in tropical reservoirs: The role of physicochemical variables and trophic interactions
Date
2020-11-01
Author
Alves Amorım, Cıhelıo
Dantas, Enio Wocyli
Moura, Ariadne do Nascimento
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
125
views
0
downloads
Cite This
Understanding the importance of environmental variables on the dominance of cyanobacteria is crucial for appropriately managing water resources. Although studies about temperate and subtropical regions show a high influence of nutrients and temperature on blooms, this relationship is still unclear for the tropics. Accordingly, we hypothesized that nutrients and temperature arc the main factors driving cyanobacterial blooms in tropical reservoirs, and those relationships are intensified by the zooplankton. To test these hypotheses, we constructed a structural equation model based on the monitoring of ten reservoirs from Northeast Brazil. We analyzed the effects of physicochemical variables and zooplankton on cyanobacterial blooms and the biomass of four morphotypes. Cyanobacterial biomass varied within the reservoirs, with bloom records (0.2-268.4 mg L-1) in all of them, primarily constituted by the colonial morphotype, followed by picocyanobacteria, heterocyted, and non-heterocyted filaments. The cyanobacterial community was driven mainly by chemical variables (55.14% of the variation), followed by physical (48.28%), and zooplankton (39.47%). Through the structural equation model, we demonstrated that total cyanobacterial biomass, as well as the morphotypes, were mainly influenced by omnivorous crustaceans and total dissolved phosphorus. Solar radiation, air temperature, mixing zone, and salinity were important to explain the biomass of the morphotypes. The model explained most of the variation in the picocyanobacterial blooms (79.8%), followed by total cyanobacteria (62.4%), heterocyted filaments (59.1%), non-heterocyted filaments (58.2%), and coccoids (55.1%). Zooplankton groups were also influenced by the physicochemical variables, which presented direct and indirect effects on cyanobacteria. Given the predictions of increased eutrophication, warming, and salinization, cyanobacterial blooms will become more intense in tropical reservoirs. Thus, restoring measures must be adopted to reduce bloom development, such as external phosphorus and salt loadings, and biomanipulation. (C) 2020 Elsevier B.V. All rights reserved.
Subject Keywords
Brazilian semiarid
,
Cyanobacterial morphotypes
,
Phosphorus
,
Salinity
,
Structural equation modeling
,
Zooplankton
,
CLIMATE-CHANGE
,
ALGAL BLOOMS
,
TOP-DOWN
,
ZOOPLANKTON
,
PHYTOPLANKTON
,
DOMINANCE
,
PHOSPHORUS
,
EFFICIENCY
,
COMMUNITY
,
DRIVERS
URI
https://hdl.handle.net/11511/102446
Journal
SCIENCE OF THE TOTAL ENVIRONMENT
DOI
https://doi.org/10.1016/j.scitotenv.2020.140659
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Data Descriptor: A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins
MANTZOUKİ, Evanthia; et. al. (2018-10-23)
Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consis...
Optimization of Multireservoir Systems by Genetic Algorithm
Hinçal, Onur; Altan Sakarya, Ayşe Burcu; Ger, A. Metin (2011-03-01)
Application of optimization techniques for determining the optimal operating policy of reservoirs is a major issue in water resources planning and management. As an optimization Genetic Algorithm, ruled by evolution techniques, have become popular in diversified fields of science. The main aim of this study is to explore the efficiency and effectiveness of genetic algorithm in optimization of multi-reservoirs. A computer code has been constructed for this purpose and verified by means of a reference problem...
ANALYZING THE COMBINED IMPACT OF CLIMATE AND LAND USE LAND COVER CHANGE ON THE HYDROLOGICAL RESPONSE OF JHELUM RIVER BASIN IN KASHMIR
Hamid, Injila; Akıntuğ, Bertuğ; Sustainable Environment and Energy Systems (2022-7)
In terms of efficient and sustainable management of water resources of a basin, land use land cover (LULC) and climate change impact studies hold utmost importance. Land use change dynamics along with the climate change owing to greenhouse gas emissions are altering the hydrological response of river basins. This study therefore focuses on quantifying the combined impact of LULC and climate change on the water balance components of the Jhelum river basin using Soil and Water Assessment Tool (SWAT) hydrologi...
Understanding Groundwater And Surface Waterexchange Processes Along A Controlled Stream Using Thermal Remote Sensing And in Situ Measurements
Varlı, Dilge; Yılmaz, Koray Kamil (2016-12-16)
Effective management of water resources requires understanding and quantification of interaction between groundwater and surface water bodies. Moreover, the exchange processes have recently received increasing attention due to important influences on biogeochemical and ecological status of watersheds. In this study we investigated the exchange processes between surface water and groundwater along Kirmir stream - a controlled stream nearby Kizilcahamam, Ankara, Turkey. At the first stage, potential stream re...
Adaptive strategies to mitigate the impacts of climate change on European freshwater ecosystems (REFRESH)
Beklioğlu, Meryem(2014-1-31)
Understanding how freshwater ecosystems will respond to future climate change is essential for the development of policies and implementation strategies needed to protect aquatic and riparian ecosystems. The future status of freshwater ecosystems is however, also dependent on changes in land-use, pollution loading and water demand. In addition the measures that need to be taken to restore freshwater ecosystems to good ecological health or to sustain priority species as required by EU Directives need to be d...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Alves Amorım, E. W. Dantas, and A. d. N. Moura, “Modeling cyanobacterial blooms in tropical reservoirs: The role of physicochemical variables and trophic interactions,”
SCIENCE OF THE TOTAL ENVIRONMENT
, vol. 744, pp. 0–0, 2020, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/102446.