Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Failure behavior of on-site repaired CFRP laminates
Date
2023-05-01
Author
Sonat, Evren
Bakır, Mete
Özerinç, Sezer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
151
views
0
downloads
Cite This
On-site repairs of carbon fiber reinforced polymer (CFRP) composites involve out-of-autoclave curing, which increases the defect density and reduces the mechanical properties. This work aims to understand the strength and the associated failure mechanisms of on-site repaired woven CFRP laminates through experiments and simulations. A series of wet lay-up and prepreg step repaired specimens produced according to standardized aerospace procedures were tested under uniaxial tension. Wet lay-up repair provided a strength recovery of 66%, whereas prepreg repairs maintained 76% of the original strength. Finite element modeling closely predicted the experimentally observed behavior and showed that stress concentrations due to the adhesive-adherent stiffness mismatch are the primary causes of the lowered strength. The findings provide systematic experimental data and an accurate modeling framework to design and implement effective repairs in practice.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85148547764&origin=inward
https://hdl.handle.net/11511/102658
Journal
Composite Structures
DOI
https://doi.org/10.1016/j.compstruct.2023.116806
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
MECHANICAL PROPERTIES OF REPAIRED CARBON FIBER REINFORCED POLYMER COMPOSITES
Sonat, Emine Evren; Özerinç, Sezer; Department of Mechanical Engineering (2021-12-10)
Carbon fiber reinforced polymer (CFRP) composites are increasingly used in the aerospace industry due to their high specific strength compared to conventional metallic materials. However, a significant shortcoming of these composites is their increased susceptibility to damage. Structural repair is a common method to restore the load-carrying capacity of a damaged part when the damage size exceeds the pre-defined tolerances. Scarf and stepped bonded repair methods are the primary choice for cases that requi...
Fatigue Cracking of Hybrid Plasma Gas Metal Arc Welded 2205 Duplex Stainless Steel
Yurtışık, Koray; Tirkeş, Süha (2014-01-01)
Contrary to other keyhole welding applications on duplex stainless steels, a proper cooling time and a dilution were achieved during hybrid plasma gas metal arc welding that provided sufficient reconstructive transformation of austenite without sacrificing its high efficiency and productivity. Simultaneous utilization of keyhole and metal deposition in the hybrid welding procedure enabled us to get an as-welded 11 mm-thick standard duplex stainless steel plate in a single pass. Me examination on hybrid plas...
Experimental Investigation of Strength of Curved Beam by Thin Ply Non-Crimp Fabric Laminates
Arca, M. A.; PAPİLA, MELİH; Çöker, Demirkan (2016-06-09)
Resistance against delamination failure and through the thickness tensile properties of curved carbon fiber reinforced plastics composites are investigated experimentally by conducting the curved beam strength tests. Effect of novel material thin ply non crimp fabric (NCF) architecture on delamination resistance of carbon fiber reinforced composites are investigated and compare with that of standard UD layups. In order to determine through the thickness tensile properties of curved carbon fiber composites, ...
Dynamic modeling of spindle-tool assemblies in machining centers
Ertürk, Alper; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2006)
Regenerative chatter is a well-known machining problem that results in unstable cutting process, poor surface quality, reduced material removal rate and damage on the machine tool itself. Stability lobe diagrams supply stable depth of cut ا spindle speed combinations and they can be used to avoid chatter. The main requirement for generating the stability lobe diagrams is the system dynamics information at the tool tip in the form of point frequency response function (FRF). In this work, an analytical model ...
Simulation of equal channel angular pressing applied to produce structures with ultrafine-sized grains
Karpuz, Pinar; Şimşir, Caner; Gür, Cemil Hakan (Inderscience Publishers, 2009-01-01)
Severe plastic deformation methods are of great interest in industrial forming applications, as they give rise to significant refinement in microstructures and improvements in mechanical and physical properties. In the 'equal channel angular pressing (ECAP)', which is the most common method for production of ultrafine grained bulk samples, very high plastic strains are introduced into the bulk material without any change in cross section. In this study, the plastic deformation behaviour of the materials sub...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Sonat, M. Bakır, and S. Özerinç, “Failure behavior of on-site repaired CFRP laminates,”
Composite Structures
, vol. 311, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85148547764&origin=inward.