Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Experimental Investigation of Strength of Curved Beam by Thin Ply Non-Crimp Fabric Laminates
Date
2016-06-09
Author
Arca, M. A.
PAPİLA, MELİH
Çöker, Demirkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
85
views
0
downloads
Cite This
Resistance against delamination failure and through the thickness tensile properties of curved carbon fiber reinforced plastics composites are investigated experimentally by conducting the curved beam strength tests. Effect of novel material thin ply non crimp fabric (NCF) architecture on delamination resistance of carbon fiber reinforced composites are investigated and compare with that of standard UD layups. In order to determine through the thickness tensile properties of curved carbon fiber composites, standard test method is carried out, namely four-point bending tests. The dynamic delamination propagation and failure sequences under curved beam bending is captured using Photron© Fastcam SA5 ultra high speed system. For the non-crimp fabric configuration an increase in the curved beam strength is observed in comparison with [0] and [0/45/-45/0] laminates by unidirectional (UD) tape material. For the UD tape, the initial defects caused by the out-of-autoclave manufacturing process is found to be the potential failure sites. The test results and observations suggest that thin-ply NCF is much less vulnerable to the existence of manufacturing voids in contrast to standard thickness UD tape. Finally, TPNCF is shown to have superior properties in regard to delamination resistance and curved-beam strength.
Subject Keywords
Curved beam strength
,
High-speed camera
,
Thin-ply non-crimp fabric
,
Delamination Curved composite
,
Curved composite
URI
https://hdl.handle.net/11511/35581
DOI
https://doi.org/10.1007/978-3-319-42195-7_6
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Experimental investigation of the effect of CNT addition on the strength of CFRP curved composite beams
Arca, M.A.; Uyar, I.; Çöker, Demirkan (2015-01-01)
Carbon nanotubes (CNT) have been attracting attention as a toughening material in composite matrix due to their excellent mechanical properties. However, superior properties of CNTs have not yet been realized in the strengthening of composites against fracture. This study focuses on investigating the effect of CNT variation in the epoxy resin on the strength of curved composite beams. Specimens are [0/90] fabric carbon/epoxy composite laminates manufactured by hand layup technique 3 % wt CNT fractions in th...
Experimental Observations of Dynamic Delamination in Curved [0] and [0/90] Composite Laminates
Uyar, I.; Arca, M.A.; Gozluklu, B.; Çöker, Demirkan (2015-01-01)
Curved composite parts are increasingly replacing metal ribs and box structures in recent civil aerospace structures and wind turbine blades. Delamination of L-shaped composite laminates occurs by interlaminar opening stresses in addition to the interlaminar shear stresses at the curved region. An experimental setup is designed to investigate dynamic delamination in L-shaped composite brackets under quasi static shear loading. The materials are unidirectional [0]17and cross-ply [0/90]17 epoxy/graphite compo...
Experimental Observations of Dynamic Delamination in Curved [0] and [0/90] Composite Laminates
Imren, Uyar; Miray, Arca; Burak, Gozluklu; Çöker, Demirkan (null, Springer, 2015-01-01)
Curved composite parts are increasingly replacing metal ribs and box structures in recent civil aerospace structures and wind turbine blades. Delamination of L-shaped composite laminates occurs by interlaminar opening stresses in addition to the interlaminar shear stresses at the curved region. An experimental setup is designed to investigate dynamic delamination in L-shaped composite brackets under quasi static shear loading. The materials are unidirectional [0]17and cross-ply [0/90]17 epoxy/graphite compo...
MECHANICAL PROPERTIES OF REPAIRED CARBON FIBER REINFORCED POLYMER COMPOSITES
Sonat, Emine Evren; Özerinç, Sezer; Department of Mechanical Engineering (2021-12-10)
Carbon fiber reinforced polymer (CFRP) composites are increasingly used in the aerospace industry due to their high specific strength compared to conventional metallic materials. However, a significant shortcoming of these composites is their increased susceptibility to damage. Structural repair is a common method to restore the load-carrying capacity of a damaged part when the damage size exceeds the pre-defined tolerances. Scarf and stepped bonded repair methods are the primary choice for cases that requi...
Investigation of crack growth along curved interfaces in L-shaped composite and polymers
Yavas, D.; Gozluklu, B.; Çöker, Demirkan (2014-01-01)
Delamination in unidirectional L-shaped composite laminates is modeled with two L-shaped polycarbonate plates bonded to each other where the effect of pre-crack length on the stability of the crack growth is investigated experimentally and computationally. In the experimental study, a unique testing fixture with a sliding platform is designed to create a pure vertical displacement to one of the arms. The full-field technique of photoelasticity is used in order to visualize isochromatic fringe pattern around...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. A. Arca, M. PAPİLA, and D. Çöker, “Experimental Investigation of Strength of Curved Beam by Thin Ply Non-Crimp Fabric Laminates,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35581.