Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Microplastics & organics - a comparative study of sorption of triclosan and malachite green onto polyethylene
Download
wst087051072.pdf
Date
2023-02-01
Author
Ciftci, Goekce
Turkeli, Ulku Dide
Ozen, Elif Yaren
Özdemir, Melek
Sanin, Faika Dilek
İmamoğlu, İpek
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
191
views
100
downloads
Cite This
This study aims to elucidate interaction of organics with microplastics in a comparative manner via the use of two model compounds (i.e., triclosan and malachite green) having different physicochemical properties, onto polyethylene (PE). TCS, is hydrophobic with low solubility , while MG is hydrophilic with high aqueous solubility. Kinetic studies indicate faster sorption (t(eq) = 24 h) and equilibrium studies show much higher capacity (q(e) = 6,921 mg/g) for TCS, when compared to those of MG (t(eq) = 5 d, q(e) = 221 mg/g). While pseudo-kinetic model fits sorption of both organics to PE, equilibrium isotherms as well as the results on effect of particle size and pH indicate dissimilar sorption mechanisms. Considering pH(PZC)= 2, observation of favourable sorption of TCS in acidic region and sorption being unaffected by particle size was explained by TCS sorption to be dominated by hydrophobic interactions in amorph regions of PE. Higher removal of MG was observed at lower surface charge of PE, and a clear favourable impact of surface area on MG sorptive capacit y pointed to the presence of non-specific van der Waals type interactions on the surface of PE. Mechanistic evaluations presented here contribute to our understanding of interaction of MPs with organics in aquatic ecosystems.
Subject Keywords
hydrophobic interaction
,
malachite green
,
mechanism
,
microplastics
,
sorption
,
triclosan
,
ADSORPTION
,
CHLORIDE
URI
https://hdl.handle.net/11511/102714
Journal
WATER SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.2166/wst.2023.040
Collections
Department of Environmental Engineering, Article
Suggestions
OpenMETU
Core
Bioflocculation of activated sludge: The role of calcium ions and extracellular polymers
Sanin, Faika Dilek (Informa UK Limited, 2000-12-01)
In an attempt to identify the bioflocculation mechanisms, this study examines the role of calcium ions in flocculation of activated sludge. Two calcium specific chelants, ethylenebis (oxyethylenenitrilo)tetraacetic acid (EGTA) and sodium hexametaphosphate (HMT) are used to extract calcium ions. Both chemicals successfully extract the calcium ions from sludge structure, which is confirmed either by an increase in solution calcium concentration or by a decrease in calcium concentration in the sludge solid mat...
Nanoclay and carbon nanotubes as potential synergists of an organophosphorus flame-retardant in poly(methyl methacrylate)
Isitman, Nihat Ali; Kaynak, Cevdet (2010-09-01)
This study explores whether nanoparticles incorporated in polymers always act as synergists of conventional flame-retardant additives. For this purpose, two different filler nanoparticles, namely organically modified layered-silicate clay minerals or nanoclays and multi-walled carbon nanotubes, were incorporated in poly(methyl methacrylate) filled with an organophosphorus flame-retardant that acts through intumescence. Effective dispersion techniques specific to each nanoparticle were utilized and prepared ...
Hydrothermal synthesis of TiO₂ nanostructures for photocatalitic and photovoltaic applications
Erdoğan, Nursev; Öztürk, Abdullah; Park, Jongee; Department of Metallurgical and Materials Engineering (2017)
Titanium dioxide (TiO2) nanostructures with different crystal structures and various morphologies were synthesized by hydrothermal process to utilize them in photocatalytic and photovoltaic applications. The investigations were conducted in three different sets of systematic experimental studies. The first set of experiments was based on the synthesis of TiO2 nanostructures in the presence of strong sodium hydroxide (NaOH) catalyzer. Temperature and molarity of NaOH were kept constant while hydrothermal rea...
Photovoltaic Properties of Poly(Triphenylamine-Thiazolo[5,4-d] Thiazole) Copolymer Dye in Bulk-Hetorojunction Organic Solar Cells
Olgun, Ugursoy; Gulfen, Mustafa; HIZALAN, Gonul; Çırpan, Ali; Toppare, Levent Kamil (2017-04-01)
In this study, the photovoltaic properties of poly(triphenylamine-thiazolo[5,4-d]thiazole) alternating copolymer dye in bulk heterojunction polymer solar cells were examined. The copolymer is a red colored dye material with high thermal stability, good solubility and low-band gap energy. The band gap energy of the polymer was determined as 1.36 eV. The conductivity of the polymer thin film was measured as 1.5x10(-5) S/cm. The polymer solar cells were fabricated using the different ratios of the blends of th...
Ultrafast Photoinduced Carrier Dynamics of Organic Semiconductors Measured by Time-Resolved Terahertz Spectroscopy
Esentürk, Okan; Lane, Paul A; Heilweil, Edwin J (null, 2010-01-01)
Intrinsic properties of organic semiconductors are investigated by Time-Resolved Terahertz Spectroscopy (TRTS) to assess their relative mobilities and efficiencies. Our results are well correlated with device measurements and show the effectiveness and advantages of using this non-contact optical technique to rapidly identify prospective materials. After a brief introduction of the TRTS technique, we summarize our results from relative mobility measurements of the organic semiconductor polymers poly(3-hexyl...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Ciftci, U. D. Turkeli, E. Y. Ozen, M. Özdemir, F. D. Sanin, and İ. İmamoğlu, “Microplastics & organics - a comparative study of sorption of triclosan and malachite green onto polyethylene,”
WATER SCIENCE AND TECHNOLOGY
, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/102714.