Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Celecoxib Nanoformulations with Enhanced Solubility, Dissolution Rate, and Oral Bioavailability: Experimental Approaches over In Vitro/In Vivo Evaluation
Download
index.pdf
Date
2023-02-01
Author
Arslan, Aslıhan
Yet, Barbaros
NEMUTLU, EMİRHAN
AKDAĞ ÇAYLI, YAĞMUR
EROĞLU, HAKAN
ÖNER, LEVENT
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
134
views
92
downloads
Cite This
Celecoxib (CXB) is a Biopharmaceutical Classification System (BCS) Class II molecule with high permeability that is practically insoluble in water. Because of the poor water solubility, there is a wide range of absorption and limited bioavailability following oral administration. These unfavorable properties can be improved using dry co-milling technology, which is an industrial applicable technology. The purpose of this study was to develop and optimize CXB nanoformulations prepared by dry co-milling technology, with a quality by design approach to maintain enhanced solubility, dissolution rate, and oral bioavailability. The resulting co-milled CXB composition using povidone (PVP), mannitol (MAN) and sodium lauryl sulfate (SLS) showed the maximum solubility and dissolution rate in physiologically relevant media. Potential risk factors were determined with an Ishikawa diagram, important risk factors were selected with Plackett-Burman experimental design, and CXB compositions were optimized with Central Composite design (CCD) and Bayesian optimization (BO). Physical characterization, intrinsic dissolution rate, solubility, and stability experiments were used to evaluate the optimized co-milled CXB compositions. Dissolution and permeability studies were carried out for the resulting CXB nanoformulation. Oral pharmacokinetic studies of the CXB nanoformulation and reference product were performed in rats. The results of in vitro and in vivo studies show that the CXB nanoformulations have enhanced solubility (over 4.8-fold (8.6 ± 1.06 µg/mL vs. 1.8 ± 0.33 µg/mL) in water when compared with celecoxib pure powder), and dissolution rate (at least 85% of celecoxib is dissolved in 20 min), and improved oral pharmacokinetic profile (the relative bioavailability was 145.2%, compared to that of Celebrex®, and faster tmax 3.80 ± 2.28 h vs. 6.00 ± 3.67 h, indicating a more rapid absorption rate).
Subject Keywords
Bayesian optimization
,
black-box
,
celecoxib
,
central composite design
,
characterization
,
dry co-milling
,
intrinsic dissolution rate
,
pharmacokinetics
,
response surface methodology
URI
https://hdl.handle.net/11511/102733
Journal
Pharmaceutics
DOI
https://doi.org/10.3390/pharmaceutics15020363
Collections
Graduate School of Informatics, Article
Suggestions
OpenMETU
Core
Chemoenzymatic synthesis of chiral hydroxymethyl cycloalkenols
Şenocak, Deniz; Demir, Ayhan Sıtkı; Department of Chemistry (2004)
Chiral cyclic alkenols with hydroxymethyl functionality are important structural units in many biologically active natural compouds such as prostaglandins, sesquiterpene antiviral agents, pentenomycins, xanthocidin, sarkomycin, etc. 1,3-cycloalkanediones are converted into bicyclic polyoxo derivatives with formaldehyde and trioxane in the presence of Lewis acid. Selective oxidation of the bicyclic compounds by using manganese(III)acetate followed by enzyme-catalyzed kinetic resolution afforded chiral bicycl...
Triazine herbicide imprinted monolithic column for capillary electrochromatography
Asir, Suleyman; Derazshamshir, Ali; YILMAZ, FATMA; DENİZLİ, ADİL (2015-12-01)
Trietazine was selectively separated from aqueous solution containing the competitor molecule cyanazine, which is similar in size and shape to the template molecule. Structural features of the molecularly imprinted column were figured out by SEM. The influence of the mobile-phase composition, applied electrical field, and pH of the mobile phase on the recognition of trietazine by the imprinted monolithic polymer has been evaluated, and the imprint effect in the trietazine-imprinted monolithic polymer was de...
Endohedrally halogen and interhalogen substituted C-70-AM1 study
Türker, Burhan Lemi (2002-12-09)
C-70 structure having a certain halogen (Cl-2, Br-2, I-2) or interhalogen molecule (BrCl, ICl, IBr) as the endohedral substituent was considered for semiempirical quantum chemical calculations at the level of AMI (RHF). All the endohedrally monosubstituted systems were found to be stable (inversely related to the bulkiness of the substituent) but endothermic (directly related to the size of the substituent). Some electronic and physicochemical properties of these systems were also reported.
Naphthazarin-Polycyclic Conjugated Hydrocarbons and Iptycenes
Dengiz, Çağatay; GUTIERREZ, Gregory D.; SWAGER, Timothy M. (American Chemical Society (ACS), 2017-07-21)
The synthesis of a set of naphthazarin-containing polycyclic conjugated hydrocarbons is described herein. Sequential Diels-Alder reactions on a tautomerized naphthazarin core were employed to access the final conjugated systems. Complete conjugation across the backbone can be achieved through complexation with BF2, as observed by (HNMR)-H-1 analysis and UV/vis spectroscopy. Precise synthetic control over the degree of oxidation of naphthazarin quinone Diels-Alder adduct 10 is additionally demonstrated and e...
Ethylene and acetaldehyde production by selective oxidation of ethanol using mesoporous V-MCM-41 catalysts
Gucbilmez, Yesim; Doğu, Timur; Balci, Suna (2006-05-10)
Vanadium-incorporated MCM-41 type catalytic materials, which were synthesized by a direct hydrothermal synthesis procedure, showed very high activity and high selectivity in the production of ethylene from ethanol in an oxidative process. Ethylene selectivity showed a significant increase with an increase in temperature over 300 degrees C, while relatively high acetaldehyde selectivities were observed at lower temperatures. An ethylene yield value of 0.66 obtained at 400 degrees C with an O-2/ethanol feed r...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Arslan, B. Yet, E. NEMUTLU, Y. AKDAĞ ÇAYLI, H. EROĞLU, and L. ÖNER, “Celecoxib Nanoformulations with Enhanced Solubility, Dissolution Rate, and Oral Bioavailability: Experimental Approaches over In Vitro/In Vivo Evaluation,”
Pharmaceutics
, vol. 15, no. 2, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/102733.