An evolution operator approach for solving initial value problems

Ergenç, Tanıl


An extension to the variational iteration method for systems and higher-order differential equations
Altıntan, Derya; Uğur, Ömür; Department of Scientific Computing (2011)
It is obvious that differential equations can be used to model real-life problems. Although it is possible to obtain analytical solutions of some of them, it is in general difficult to find closed form solutions of differential equations. Finding thus approximate solutions has been the subject of many researchers from different areas. In this thesis, we propose a new approach to Variational Iteration Method (VIM) to obtain the solutions of systems of first-order differential equations. The main contribution...
The finite element method over a simple stabilizing grid applied to fluid flow problems
Aydın, Selçuk Han; Tezer-Sezgin, Münevver; Department of Scientific Computing (2008)
We consider the stabilized finite element method for solving the incompressible Navier-Stokes equations and the magnetohydrodynamic (MHD) equations in two dimensions. The well-known instabilities arising from the application of standard Galerkin finite element method are eliminated by using the stabilizing subgrid method (SSM), the streamline upwind Petrov-Galerkin (SUPG) method, and the two-level finite element method (TLFEM). The domain is discretized into a set of regular triangular elements. In SSM, the...
Studies on the perturbation problems in quantum mechanics
Koca, Burcu; Taşeli, Hasan; Department of Mathematics (2004)
In this thesis, the main perturbation problems encountered in quantum mechanics have been studied.Since the special functions and orthogonal polynomials appear very extensively in such problems, we emphasize on those topics as well. In this context, the classical quantum mechanical anharmonic oscillators described mathematically by the one-dimensional Schrodinger equation have been treated perturbatively in both finite and infinite intervals, corresponding to confined and non-confined systems, respectively.
On principles of b-smooth discontinuous flows
Akalın, Ebru Çiğdem; Akhmet, Marat; Department of Mathematics (2004)
Discontinuous dynamical system defined by impulsive autonomous differential equation is a field that has actually been considered rarely. Also, the properties of such systems have not been discussed thoroughly in the course of mathematical researches so far. This thesis comprises two parts, elaborated with a number of examples. In the first part, some results of the previous studies on the classical dynamical system are exposed. In the second part, the definition of discontinuous dynamical system defined by...
On the WKB asymptotic solution of differential equations of the hypergeometric type
Aksoy, Betül; Taşeli, Hasan; Department of Mathematics (2004)
Citation Formats
T. Ergenç, “An evolution operator approach for solving initial value problems,” Ph.D. - Doctoral Program, Middle East Technical University, 1988.