Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Derivation of Green's functions for planarly layered anisotropic media
Download
116249.pdf
Date
2001
Author
Şen, Saffet Gökçen
Metadata
Show full item record
Item Usage Stats
139
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/12260
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Derivation of closed-form green's functions for cylindrically stratified media
Tokgöz, Çağatay; Dural, Gülbin; Department of Electrical and Electronics Engineering (1997)
Derivation of length extension formulas for complementary sets of sequences using orthogonal filterbanks
Candan, Çağatay (Institution of Engineering and Technology (IET), 2006-11-23)
A method for the construction of complementary sets of sequences using polyphase representation of orthogonal filterbanks is presented. It is shown that the case of two-channel filterbanks unifies individually derived length extension formulas for complementary sequences into a common framework and the general M-channel case produces novel formulas for the extension of complementary sets of sequences. The presented technique can also be used to generate polyphase and multilevel sequences.
Derivation of the parallel PIC/MCC numerical code and its application to the kinetic analysis of photoresonance plasma and the problem of identification of impurities within the PLES method
Kuşoğlu Sarıkaya, Cemre; Rafatov, İsmail; Department of Physics (2017)
1d3v Particle in Cell/Monte Carlo Collision (PIC/MCC) code for numerical simulations of gas discharge plasma was developed. The efficiency of the code was increased by its parallelization using Open MPI. In order to verify the applicability of the code, the benchmark tests were performed under the RF capacitively coupled discharge conditions. The effects of the particle weighting and the Courant number on the computed plasma properties were examined and the convergence of the numerical method with respect t...
Analysis of Second Order Time Filtered Backward Euler Method for MHD Equations
Cibik, Aytekin; EROĞLU, FATMA GÜLER; Kaya Merdan, Songül (Springer Science and Business Media LLC, 2020-02-01)
he present work is devoted to introduce the backward Euler based modular time filter method for MHD flow. The proposed method improves the accuracy of the solution without a significant change in the complexity of the system. Since time filters for fluid variables are added as separate post processing steps, the method can be easily incorporated into an existing backward Euler code. We show that the time filtered backward Euler method delivers better correct energy and cross-helicity balance in comparison w...
Evaluation of classical and sparsity-based methods for parametric recovery problems
Başkaya, Hasan Can; Öktem, Figen S..; Department of Electrical and Electronics Engineering (2020)
Parametric reconstruction problems arise in many areas such as array processing, wireless communication, source separation, and spectroscopy. In a parametric recovery problem, the unknown model parameters in each superimposed signal are estimated from noisy observations. Classical methods perform the recovery over directly on the continuous-valued parameter space by solving a nonlinear inverse problem. Recently sparsity-based methods have also been applied to parametric recovery problems. These methods disc...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. G. Şen, “Derivation of Green’s functions for planarly layered anisotropic media,” Middle East Technical University, 2001.