Evaluation of classical and sparsity-based methods for parametric recovery problems

Download
2020
Başkaya, Hasan Can
Parametric reconstruction problems arise in many areas such as array processing, wireless communication, source separation, and spectroscopy. In a parametric recovery problem, the unknown model parameters in each superimposed signal are estimated from noisy observations. Classical methods perform the recovery over directly on the continuous-valued parameter space by solving a nonlinear inverse problem. Recently sparsity-based methods have also been applied to parametric recovery problems. These methods discretize the parameter space to form a dictionary whose atoms correspond to candidate parameter values, represent the data as a linear combination of small number of dictionary atoms, and then solve the resulting linear inverse problem. These sparsity-based methods can be classified into three categories, namely, on-grid, off-grid and gridless sparse methods. On-grid methods require that the true parameter values lie on a set of fixed grid points. Off-grid methods also use a grid, but the recovered parameter values are allowed to be out of the grid points. On the other hand, gridless methods do not require a grid and they work directly in the continuous-valued parameter space. In this thesis, we first review the classical and sparsity-based methods developed for parametric recovery problems with single or multiple measurement vectors. We then analyze and evaluate these methods in the direction-of- arrival and parameterized source separation problems.

Suggestions

Evaluation of Sparsity-based Methods for Parameterized Source Separation
Baskaya, Hasan Can; Öktem, Sevinç Figen (2020-10-07)
Parametric reconstruction problems arise in many areas such as array processing, wireless communication, source separation, and spectroscopy. In a parametric recovery problem, the unknown model parameters in each superimposed signal are estimated from noisy observations. Sparsity-based methods used in compressive sensing are also applied to parametric recovery problems. These methods discretize the parameter space to form a dictionary whose atoms correspond to candidate parameter values, represent the data ...
Numerical analysis of long wavelength infrared HgCdTe photodiodes
Kocer, H.; Arslan, Y.; Beşikci, Cengiz (2012-01-01)
We present a detailed investigation of the performance limiting factors of long and very long wavelength infrared (LWIR and VLWIR) p on n Hg1-xCdxTe detectors through numerical simulations at 77 K incorporating all considerable generation-recombination (G-R) mechanisms including trap assisted tunneling (TAT), Shockley-Read-Hall (SRH), Auger and radiative processes. The results identify the relative strengths of the dark current generation mechanisms by numerically extracting the contribution of each G-R mec...
Assessment of alternative simulation techniques in nonlinear time history analyses of multi-story frame buildings: A case study
Karim Zadeh Naghshineh, Shaghayegh; Askan Gündoğan, Ayşegül; Yakut, Ahmet (2017-07-01)
In regions with sparse ground motion data, simulations provide alternative acceleration time series for evaluation of the dynamic response of a structure. Different ground motion simulation methods provide varying levels of goodness of fit between observed and synthetic data. Before using the seismologically acceptable synthetic records for engineering purposes, it is critical to investigate the efficiency of synthetics in predicting observed seismic responses of structures. For this purpose, in this study ...
Real-Time Detection of Interharmonics and Harmonics of AC Electric Arc Furnaces on GPU Framework
Uz-Logoglu, Eda; Salor, Ozgul; Ermiş, Muammer (2019-11-01)
In this paper, a method based on the multiple synchronous reference frame analysis is recommended and implemented to detect time-varying harmonics and interharmonics of rapidly fluctuating asymmetrical industrial loads. The experimental work has been carried out on a typical three-phase alternating current arc furnace installation. In the recommended method, the reference frame is rotated in both directions at speeds corresponding to the positive and negative sequences of all harmonics and all interharmonic...
A Bayesian approach to inclusion and performance analysis of using extra information in bioelectric inverse problems
Serinağaoğlu Doğrusöz, Yeşim; Macleod, Robert S. (The Institute of Electrical and Electronics Engineers Signa Processing Society (IEEE); 2003-12-16)
Due to attenuation and spatial smoothing that occurs in the conducting media, the bioelectric inverse problem of estimating sources from remote measurements is ill-posed and solution requires regularization. Recent studies showed that employing Bayesian methods could help increase accuracy. The basic limitations are the availability of good a priori information about the solution, and the lack of a "good" error metric. In this paper, we employ Bayesian methods, and present the mathematical framework for inc...
Citation Formats
H. C. Başkaya, “Evaluation of classical and sparsity-based methods for parametric recovery problems,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Electrical and Electronics Engineering., Middle East Technical University, 2020.