Gene reordering and concurrency in genetic algorithms

Download
2002
Şehitoğlu, Onur Tolga
This study first introduces an order-free chromosome encoding to enhance the performance of genetic algorithms by learning the linkage of building blocks in non-binary encodings. The method introduces a measure called affinity which is based on the statistical properties of gene valuations in the population. It uses the affinity values of the local and global gene pairs to construct a global permutation with tight building block positioning. Method is tested and experimental results are shown for a group of deceptive and real life test problems. Then, study proposes a gene level concurrency model where each gene position is implemented on a different process. This combines the advantages of implicit parallelism and a chromosome structure free approach. It also helps implementation of gene reordering method introduced and probably other non-linear chromosome encodings.

Suggestions

Gene Level Concurrency in Genetic Algorithms
Şehitoğlu, Onur Tolga; Üçoluk, Göktürk (Springer-Verlag, 2007-01-01)
This study describes an alternative concurrency approach in genetic algorithms. Inspiring from implicit parallelism in a physical chromosome, a vertical concurrency is introduced. Proposed gene process model allows genetic algorithms work in encodings independent from the gene position ordering in a chromosome. This feature is used to implement a gene reordering version of genetic algorithm. Further possible models of flexible gene position encodings are discussed.
Robust multiobjective evolutionary feature subset selection algorithm for binary classification using machine learning techniques
Deniz, Ayca; Kiziloz, Hakan Ezgi; Dokeroglu, Tansel; Coşar, Ahmet (2017-06-07)
This study investigates the success of a multiobjective genetic algorithm (GA) combined with state-of-the-art machine learning (ML) techniques for the feature subset selection (FSS) in binary classification problem (BCP). Recent studies have focused on improving the accuracy of BCP by including all of the features, neglecting to determine the best performing subset of features. However, for some problems, the number of features may reach thousands, which will cause too much computation power to be consumed ...
Comparison of Facial Alignment Techniques: With Test Results on Gender Classification Task
Kaya, Tunç Güven (2014-08-24)
In this paper, different facial alignment techniques are revised in terms of their effects on machine learning algorithms. This paper, investigates techniques that are widely accepted in literature and measures their effect on gender classification task. There is no special reason on selecting gender classification task, any other task could have been chosen. In audience measurement systems, many important demographics, i.e. gender, age, facial expression, can be measured by using machine learning algorithm...
Multiobjective evolutionary feature subset selection algorithm for binary classification
Deniz Kızılöz, Firdevsi Ayça; Coşar, Ahmet; Dökeroğlu, Tansel; Department of Computer Engineering (2016)
This thesis investigates the performance of multiobjective feature subset selection (FSS) algorithms combined with the state-of-the-art machine learning techniques for binary classification problem. Recent studies try to improve the accuracy of classification by including all of the features in the dataset, neglecting to determine the best performing subset of features. However, for some problems, the number of features may reach thousands, which will cause too much computation power to be consumed during t...
DARWIN: A Genetic Algorithm Language
ARSLAN, Arslan; Üçoluk, Göktürk (2013-10-29)
This article describes the DARWIN Project, which is a Genetic Algorithm programming language and its C Cross-Compiler. The primary aim of this project is to facilitate experimentation of Genetic Algorithm solution representations, operators and parameters by requiring just a minimal set of definitions and automatically generating most of the program code. The syntax of the DARWIN language and an implementational overview of the the cross-compiler will be presented. It is assumed that the reader is familiar ...
Citation Formats
O. T. Şehitoğlu, “Gene reordering and concurrency in genetic algorithms,” Ph.D. - Doctoral Program, Middle East Technical University, 2002.