Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Subfields of the function field of the deligne-Lusztig curve of ree type
Download
119446.pdf
Date
2002
Author
Çakçak, Emrah
Metadata
Show full item record
Item Usage Stats
182
views
0
downloads
Cite This
Let X be the Deligne-Luzstig curve of Ree type defined over ¥q,q = 32s+1, s > 1 and F its function field. One of the main problem here is to construct a large number of nonrational subfields of F and compute their genera. For this, we consider the fixed fields FH, of F, under subgroups H of G, where G = Aut(F/F9) is the automor phism group of F/Fg. In this thesis, we show how one can compute the genera of FH for various subgroups H of G. Our computation here is based on the facts that: G is a Ree group which acts as a permutation group on the set of rational places of F and this action of G is nothing but the usual 2-transitive representation of the Ree group.
Subject Keywords
Fourier analysis
,
Maximal functions
,
Maxima and minima
,
Curves
,
Ree groups
,
Deligne-lusztig curves
,
Maximal function fields
URI
https://hdl.handle.net/11511/12862
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Explicit maximal and minimal curves over finite fields of odd characteristics
Özbudak, Ferruh (2016-11-01)
In this work we present explicit classes of maximal and minimal Artin-Schreier type curves over finite fields having odd characteristics. Our results include the proof of Conjecture 5.9 given in [1] as a very special subcase. We use some techniques developed in [2], which were not used in [1].
The number of irreducible polynomials over finite fields with vanishing trace and reciprocal trace
Çakıroğlu, Yağmur; Yayla, Oğuz; Yılmaz, Emrah Sercan (2022-08-01)
We present the formula for the number of monic irreducible polynomials of degree n over the finite field F-q where the coefficients of x(n)(-1) and x vanish for n >= 3. In particular, we give a relation between rational points of algebraic curves over finite fields and the number of elements a is an element of F-qn for which Trace(a) = 0 and Trace(a(-1)) = 0.
Quadratic forms of codimension 2 over certain finite fields of even characteristic
Özbudak, Ferruh; Saygi, Zulfukar (2011-12-01)
Let F-q be a finite field of characteristic 2, not containing F-4. Let k >= 2 be an even integer. We give a full classification of quadratic forms over F-q(k) of codimension 2 provided that certain three coefficients are from F-4. We apply this to the classification of maximal and minimal curves over finite fields.
Upper level sets of Lelong numbers on P-2 and cubic curves
Kişisel, Ali Ulaş Özgür; Yazıcı, Özcan (2021-11-01)
Let T be a positive closed current of bidimension (1, 1) with unit mass on P-2 and V-alpha(T) be the upper level sets of Lelong numbers nu(T, x) of T. For any alpha >= 1/3, we show that vertical bar V-alpha(T)\C vertical bar <= 2 for some cubic curve C.
Automorphisms of curve complexes on nonorientable surfaces
Atalan, Ferihe; Korkmaz, Mustafa (2014-01-01)
For a compact connected nonorientable surface N of genus g with n boundary components, we prove that the natural map from the mapping class group of N to the automorphism group of the curve complex of N is an isomorphism provided that g + n >= 5. We also prove that two curve complexes are isomorphic if and only if the underlying surfaces are diffeomorphic.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Çakçak, “Subfields of the function field of the deligne-Lusztig curve of ree type,” Ph.D. - Doctoral Program, Middle East Technical University, 2002.